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Abstract

Our study was designed to evaluate osseointegration among implants with three surface treatments: plasma-
sprayed titanium (P), plasma-sprayed titanium with hydroxyapatite (PHA), and chemical-textured titanium with
hydroxyapatite (CHA). Average surface roughness (Ra) was 27 microns for the P group, 17 microns for the PHA
group, and 26 microns for the CHA group. Bilateral distal intramedullary implants were placed in the femora of
thirty rabbits. Histomorphometry of scanning electron microscopy images was used to analyze the amount of
bone around the implants at 6 and 12 weeks after implantation. Greater amounts of osseointegration were
observed in the hydroxyapatite-coated groups than in the noncoated group. For all implant surfaces, osseointegra-
tion was greater at the diaphyseal level compared to the metaphyseal level. No significant differences were seen in
osseointegration between the 6 and 12 week time points. Although the average surface roughness of the P and
the CHA groups was similar, osseointegration of the CHA implants was significantly greater. The results of this in
vivo lapine study suggest that the presence of an hydroxyapatite coating enhances osseointegration despite simila-
rities in average surface roughness.

Introduction
Total hip arthroplasty (THA) is a relatively common
procedure that typically results in increased comfort,
mobility, pain relief, and alleviation of disability. Once
thought to be appropriate for patients between 60 and
75 years of age, the age range for primary THA now
often includes a substantially younger population [1-4].
The procedure has an excellent clinical outcome and
often restores functional capacity to a large degree.
However, aseptic loosening of the components con-
tinues to limit the longevity of THA, especially in
younger more active patients [1-11]. With the increase
in life expectancy and the increase in younger patients
undergoing primary THA, the need to extend the long-
evity of THA is essential.
Non-cemented THA offers the potential for integra-

tion of the implant surface with the surrounding bone.
Hydroxyapatite coatings have proven effective in

providing excellent short- and intermediate-term out-
comes in terms of fixation, stability, function, and pain
relief [12-17]. Hydroxyapatite coatings enhance osteo-
blast attachment, proliferation, and differentiation (see
Beck for review [18]). While hydroxyapatite is generally
considered to be an osteoconductive material, it has
occasionally been shown to have osteoinductive proper-
ties, which have been attributed to the adsorption of
bone morphogenetic proteins [19].
Osteoblastic activity is modulated by surface rough-

ness and is enhanced when the Ra is between 1 and 7
μm [20,21]. In addition, surface roughness in vivo is an
important factor affecting bone apposition and mechani-
cal strength of the implant-bone interface. Increasing
surface roughness by grit-blasting or chemical-etching
has been associated with increased osseointegration in a
variety of animal models [22-25].
Since hydroxyapatite coating can alter surface rough-

ness, it is important to determine the relative significance
of the individual contributions of these factors [22,26]. For
example, superior osseointegration was found in hydro-
xyapatite-coated trabecular implants in miniature pigs
compared to grit-blasted or acid-etched surface [25].
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However, the hydroxyapatite-coated implants had a signif-
icantly greater Ra. It has not been conclusively shown
whether surface roughness or hydroxyapatite coating is
the dominant factor affecting in vivo osseointegration.
One study concluded that surface roughness contributed
more to increased bone apposition rates than hydroxyapa-
tite coating [26]. On the other hand another study found
significantly increased bone apposition in hydroxyapatite-
coated implants despite comparable surface roughness
measures between coated and uncoated implants [27]. We
therefore designed a study to investigate the factors contri-
buting to osseointegration in orthopedically relevant sur-
faces. The study hypothesis was that the addition of a
hydroxyapatite coating would enhance osseointegration
beyond that provided by change in surface roughness
alone.

Methods
Implants for intramedullary implantation in rabbit
femora were manufactured and sterilized by Stryker
Orthopaedics, Mahwah, NJ. Each implant consisted of a
cylinder 5 mm in diameter and 25 mm in length (Figure
1). One of three surface treatments was applied to each
implant: plasma-sprayed titanium (P), plasma-sprayed
titanium with hydroxyapatite (PHA), or chemical-tex-
tured titanium with hydroxyapatite (CHA). The hydro-
xyapatite coating was applied by plasma spraying high

purity hydroxyapatite powders with tightly controlled
particle size using Sulzer Metco Plasma Spray System.
HA powders were injected with Argon as the carrier gas
to produce coating with thickness ranging from 40-70
microns (nominal 50 microns). The coating had a mini-
mum total crystallinity of 65%. The minimum HA frac-
tion in the crystalline phase was 90%. The average
tensile and shear strength of the coating were ≥ 34 MPa
and ≥17 MPa respectively. The chemical texturing was
performed by repetitive masking (with an acid resistant
mask) and chemical milling with nitric and hydrofluoric
acid. The details regarding the chemical texturing pro-
cess and the osseointegration of chemical-textured
implants have been previously reported [22]. Implant
surface roughness was measured with a Sheffield Profil-
ometer (Sheffield, Fond du Lac, WI).
Thirty adult male New Zealand White rabbits were

used in our study. After institutional review board
approval, rabbits underwent bilateral femoral intrame-
dullary implantation under general anesthesia. All ani-
mals received Buprenorphine 0.03 mg/Kg IM
immediately postoperatively, and 0.01 mg/Kg IM every
12 hours for three days. After that any animal demon-
strating pain or discomfort received Buprenorphine
0.01 mg/Kg IM. All animals were allowed unrestricted
cage activity, and food and water ad libitum. Tempera-
ture was maintained at 24°C and humidity at 70%. All
rabbits tolerated the anesthesia and surgical procedure
uneventfully. Recovery was quick and rabbits were
usually ambulating without noticeable limp by post-
operative day 7. One rabbit developed intestinal
obstruction after ingesting surgical dressing and was
euthanized 6 days before schedule. The femora were
harvested from this rabbit and included in the SEM
analysis.
The details of this in vivo rabbit model have been

described previously (Figure 2) [22,28]. The appropriate
experimental implant was press-fit into the intramedul-
lary canal through a drill hole in the intercondylar
notch of the femur. Bilateral implantation was used to
reduce any bias introduced by unilateral implantation
because the animal might favor the operated limb.
Implants were distributed by type between limbs to per-
mit paired comparison with an equal number of pairs
per time point (P vs PHA, P vs CHA, and PHA vs
CHA). Fifteen rabbits were euthanized postoperatively at
6 weeks; 15 at 12 weeks. At euthanasia, bilateral distal
femora were harvested, cleaned of soft tissue, and fixed
in 70% ethanol.
The femur bone was trimmed above and below the ends

of the implant, cleaned of soft-tissue, and fixed in 70%
alcohol. The specimen was further dehydrated in absolute
alcohol and de-fatted in 50% mixture of ether and acetone
before being placed in 100% alcohol again for 12 hours.

Figure 1 Photographs of implant surfaces. P = plasma-sprayed
titanium (mean Ra = 27 microns); PHA = plasma-sprayed titanium
with plasma-sprayed hydroxyapatite coating (mean Ra = 17
microns); CHA = chemical-textured titanium surface (by acid
etching) with hydroxyapatite coating (mean Ra = 26 microns). On
visual inspection the surface texture of the P surface appear
qualitatively more similar to the PHA surface when compared to the
CHA surface.
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The specimen was then embedded in methyl methacrylate
and transverse sections nominally 1-mm thick cut with a
diamond wafering blade at three levels, approximately
coinciding with the distal third of the femoral diaphysis,
the distal femoral metaphysis, and a level midway between
the two. Backscatter electron images were obtained using
a scanning electron microscope (JEOL 35, JEOL Ltd,
Tokyo, Japan) at 40 × magnifications, 25-KeV beam vol-
tage, and 100 μA emission current at a working distance
of 15 mm. Images were of the implant-bone interface
were captured around the perimeter of the implant and
stored in 8-bit grayscale format at a resolution of 128 pix-
els per mm (pixel size 7.8 μm).
Automated computerized image analysis was per-

formed on the SEM images using a previously validated
approach [22,29]. A custom script was written
(MATLAB, Image Processing Toolbox, MathWorks,
Natick, MA). The image was segmented into bone and
implant regions based on the trimodal histogram of the
image. Images were initially filtered to remove random
stray pixels. The image was segmented into three areas
represented by: implant pixels (grayscale value between
200 and 255), bone pixels (grayscale value between 80
and 200), and soft-tissue pixels (grayscale value between
0 and 80). An edge detection algorithm was used to
detect pixels at the perimeter of the implant and the
bone and soft-tissue pixels adjacent to the edge of the
implants were counted.
Osseointegration was defined as bone-to-implant con-

tact and calculated as the ratio of the number of bone
pixels relative to the total number of pixels (bone + soft
tissue) at the perimeter of the implant. Additionally, the

relative numbers of bone pixels were measured at vary-
ing distances (up to 0.24 mm) radially outward from the
perimeter of the implant to detect changes in patterns
of bone growth among the different surfaces.
Power analysis determined that a sample size of 10

was adequate to detect differences in osseointegration of
greater than 15% among groups with a power greater
than 80% and an alpha of 0.05, assuming a standard
deviation of up to 11%. Results from four quadrants
were averaged to obtain the net osseointegration and
presence of bone for each section level.
Multifactorial two-way Analyses of Variance

(ANOVA) were performed on mean osseointegration
(or presence of bone at 0.03 to 0.24 mm from the
implant surface) with surface treatment, time after sur-
gery, and bone section level as the variables. When sta-
tistical differences were identified, Tukey post hoc
pairwise comparisons were performed. Significant differ-
ences were assumed at p ≤ 0.05.

Results
Mean surface roughness (Ra) was 27 microns for the P
group, 17 microns for the PHA group, and 26 microns
for the CHA group (statistically different between the P
and PHA groups and between the P and CHA groups).
Representative SEM images of osseointegration for the
three surfaces are shown in Figure 3. ANOVA indicated
significant differences in osseointegration as a function
of both section level and surface treatment. Mean
osseointegration was significantly higher in the CHA (74
± 15%) and PHA (64 ± 14%) groups as compared to the
P group (39 ± 17%) (Figure 4). When all implant sur-
faces were pooled together, osseointegration at the dia-
physeal level (69 ± 18%) was significantly greater than at
both the intermediate (53 ± 22%) and metaphyseal levels
(56 ± 19%). However, the differences in osseointegration
along the axial direction were statistically similar
between surface treatments (i.e., diaphyseal osseointegra-
tion was greater for all implant surfaces). No significant
differences between 6 week and 12 week data were
observed (Figure 5).
ANOVA also indicated significant differences in pre-

sence of bone radially outward from the perimeter of
the implant. These differences were also related to both
section level and surface treatment, with no time effect.
Significantly greater bone was present within 0.03 mm
of the implant surface was observed in the hydroxyapa-
tite-coated groups (Figure 6). However, from 0.03 to
0.24 mm no further differences in presence of bone
were noted as a function of surface treatment. Signifi-
cant differences in presence of bone among bone section
levels were also observed and these differences remained
constant throughout the 0.24 mm distance from the
implant perimeter evaluated. The presence of bone in

Figure 2 Diagram of intramedullary implantation. The implanted
bone was sectioned at three levels shown.
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Figure 3 Representative SEM images are shown depicting the range of low and high osseointegration for each surface. A: Plasma-
sprayed titanium surface (P) showing 0% osseointegration (intermediate level, posterior quadrant). B: Plasma-sprayed titanium surface (P)
showing 46% osseointegration (diaphyseal level, anterior quadrant). C: Plasma-sprayed titanium surface with hydroxyapatite (PHA) coating
showing 11% osseointegration (intermediate level, anterior quadrant). D: Plasma-sprayed titanium surface with hydroxyapatite (PHA) coating
showing 100% osseointegration (diaphyseal level, anterior quadrant). E: Chemical-textured surface with hydroxyapatite coating (CHA) showing
24% osseointegration (intermediate level, anterior quadrant). F: Chemical-textured surface with hydroxyapatite coating (CHA) showing 97%
osseointegration (diaphyseal level, anterior quadrant). The bar represents 1 mm (image resolution = 280 pixels per mm).
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the radial direction at the diaphyseal and metaphyseal
levels was significantly higher than at the intermediate
level. No significant differences in presence of bone
were observed between 6 and 12 weeks.

Discussion
The intramedullary bone response to three titanium
surfaces (grit-blasted, porous fiber mesh, and acid-
etched) was previously evaluated using the same ani-
mal model [22]. In that study, the chemically textured
(by acid-etching) surface with a Ra of 18 microns
showed higher osseointegration than the grit-blasted

surface with and Ra of 6 microns. This study builds on
our previous findings by investigating the effect of
hydroxyapatite coating on surfaces with different
roughness. The PHA and CHA groups had very differ-
ent Ra values of 17 microns and 26 microns, respec-
tively, yet the osseointegration of each hydroxyapatite-
coated surface was comparable, which suggested that
the presence of the osteoinductive hydroxyapatite
coating had a greater influence on bone growth than
the surface roughness. Conversely, the mean Ra values
for the P and CHA groups were very similar at 27
microns and 26 microns, respectively. However, the
osseointegration and distribution of bone were signifi-
cantly different between these two groups.
Both surface roughness and hydroxyapatite coating

have been shown to increase osseointegration [30].
Some reports have attributed increased osseointegration
to surface roughness [23,31,32] while other reports to
the hydroxyapatite coating [33-36]. Since the hydroxya-
patite coating alters the surface roughness, a few studies
have attempted to quantify the relative contribution of
surface topography versus hydroxyapatite coating. Carls-
son et al implanted titanium implants in the upper tibia
of osteoarthritic knees of patients scheduled for total
knee arthroplasty [37]. The osseointegration reported at
3 months was significantly higher in grit-blasted
implants (mean Ra = 3.1) than in implants with a
smooth surface (mean Ra = 0.9). This osseointegration
was similar to that seen in implants coated with hydro-
xyapatite (mean Ra = 5.1). However, the sample size stu-
died was small with a large variance in the reported
data. In a more controlled canine femoral intramedul-
lary model, Hacking et al determined the relative contri-
butions of surface chemistry and topography on

Figure 4 Mean osseointegration (with standard deviation bars)
was plotted for each paired comparison. Data from 6 and 12 week
time points were pooled. The hydroxyapatite-coated groups (PHA and
CHA) consistently resulted in higher levels of osseointegration than in
the uncoated group. The difference between the two hydroxyapatite-
coated groups was not significant. (P = plasma-sprayed titanium;
PHA = plasma-sprayed titanium with hydroxyapatite coating, and
CHA = chemical-textured titanium with hydroxyapatite; * denotes
statistically significant difference at p < 0.05).

Figure 5 Mean osseointegration (with standard deviation bars)
was plotted for each group at the 6-week and 12-week time
points. No significant differences between time points were noted.

Figure 6 Percentage of bone plotted as a function of distance
from implant surface. Six and 12 week data are pooled for each
group. Bone growth was higher within 0.03 mm of the implant
surface in the hydroxyapatite-coated groups compared to the
uncoated group.
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osseointegration [26]. The hydroxyapatite surface of one
group of implants was coated with a thin film of tita-
nium, which masked the chemical activity of the hydro-
xyapatite coat while retaining the topography and
surface roughness. Mean osseointegration of hydroxya-
patite-coated implants (74%) was higher than the
masked hydroxyapatite group (59%) or the grit-blasted
group (23%). The relative increase in osseointegration
between masked hydroxyapatite implants and grit-
blasted implants was larger than the increase in osseoin-
tegration between hydroxyapatite-coated and masked
hydroxyapatite implants. The authors therefore con-
cluded that surface topography was the dominant factor
influencing bone growth.
On the other hand, our study found a stronger corre-

lation between the presence of hydroxyapatite and
osseointegration than between surface roughness and
osseointegration. In our study, the surface roughness of
the implants used ranged from a Ra of 17 to 26 microns.
The surface roughness of the implants tested by Carls-
son et al and Hacking et al were in the 3 to 6 micron
range. It is therefore possible that an interaction effect
exists between surface roughness and hydroxyapatite
coating on osseointegration. At higher magnitudes of
surface roughness, the hydroxyapatite coating may con-
tribute more to osseointegration. The differences in
findings underscore the need for additional research to
better understand the processes that influence
osseointegration.
Osseointegration was significantly higher at the dia-

physeal level compared to that at the metaphyseal or
intermediate levels. Implant-bone contact as well the
type of bone (trabecular versus lamellar) varies along
the axial direction. However, the differences in osseoin-
tegration along the axial direction were statistically simi-
lar between surface treatments. This suggests an
absence of interaction effect between surface chemistry
and location of implant. The presence of bone in the
radial direction also varied by implant surface. Signifi-
cantly greater bone was present within 0.03 mm of the
implant surface in the hydroxyapatite-coated groups.
While the SEM could not differentiate between newly
deposited bone and pre-existing bone, these differences
near the implant-bone surface were likely due to new
bone formation.
The similarity in the chemistry of the hydroxyapatite

coating with the crystalline phase of bone is believed to
be one of the reasons for its excellent biocompatibility
and osteoconductive properties. The slow but finite dis-
solution rate of crystalline hydroxyapatite provides a
continuous source of calcium and inorganic phosphate
[18]. In our present study, as well as in those reported
by others, bone often appears to be directly deposited
on the hydroxyapatite coating without any intervening

layer of fibrous tissue, the latter being more commonly
seen in uncoated titanium surfaces [22,23,28,37]. While
hydroxyapatite by itself is considered osteoconductive,
in vivo the surface adsorption of proteins (such as bone
morphogenetic proteins) may render the surface
osteoinductive [38,39]. In addition, osteoblasts may
attach and release active osteoinductive factors[18]. All
of these factors combined may be responsible for the
enhanced bone response.
Clinical outcomes have substantiated the results of

this animal model. Early osseointegration and more
stable implant-bone interfaces were seen radiographi-
cally. In patients implanted with hydroxyapatite-coated
femoral stems, no evidence of mechanical failures or
progressive radiolucencies was noted [40,41]. Evidence
exists that hydroxyapatite provides benefits beyond pro-
moting osseointegration and enhancing implant stability.
More complete osseointegration may act as a barrier to
the migration of polyethylene debris along the bone-
implant interface thereby reducing the incidence of
osteolysis [9,10,42,43]. Rahbek et al demonstrated that
hydroxyapatite effectively prevented particle migration
when compared to non-coated grit-blasted titanium
alloy implants in a canine femoral model [10,43,44]. A
ten-year clinical follow up of a hydroxyapatite-coated
femoral stem did not find evidence of distal osteolysis
despite relatively high polyethylene wear [41,45]. With
current-generation implant designs, short-term stability
is no longer a major issue [14,15,46,47]. Longer-term
follow up, however, shows polyethylene wear and lysis
to be a major concern [48-51]. Measures that directly
reduce wear (such as crosslinked polyethylenes and
alternative bearing surfaces) have been introduced with
some success [52,53]. However, a higher level of
osseointegration is also extremely valuable, because it
can reduce the incidence of distal osteolysis, which is
one of the primary causes of implant failure [41,48,54].
One limitation of the study was the use of only rough-

ness parameter (Ra). Other roughness and surface para-
meters may also be important in determining potential
for osseointegration. Osseointegration was only mea-
sured using one histomorphometric parameter (bone-to-
implant contact). We did not measure the mechanical
strength of the interface that is relevant for hip arthro-
plasty. However, others have correlated mechanical pull-
out strength with the histomorphetric assessment of
osseointegration [28].
Effective osseointegration of noncemented compo-

nents plays an essential role in implant fixation, long-
term stability, and survivorship. Our in vivo study evalu-
ated the bone response to three surfaces, which adds to
the body of evidence that is useful for optimizing the
osseointegration of implants and enhancing fixation. It
is important to identify factors that minimize joint
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arthroplasty failure and the significant physical and
financial costs that failure represents. Finally, clinical
outcomes studies are needed to validate the impact of
implant surface and related osseointegration on THA
outcomes.
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