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Effects of obesity on bone metabolism
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Abstract

Obesity is traditionally viewed to be beneficial to bone health because of well-established positive effect of
mechanical loading conferred by body weight on bone formation, despite being a risk factor for many other
chronic health disorders. Although body mass has a positive effect on bone formation, whether the mass derived
from an obesity condition or excessive fat accumulation is beneficial to bone remains controversial. The underline
pathophysiological relationship between obesity and bone is complex and continues to be an active research area.
Recent data from epidemiological and animal studies strongly support that fat accumulation is detrimental to bone
mass. To our knowledge, obesity possibly affects bone metabolism through several mechanisms. Because both
adipocytes and osteoblasts are derived from a common multipotential mesenchymal stem cell, obesity may
increase adipocyte differentiation and fat accumulation while decrease osteoblast differentiation and bone
formation. Obesity is associated with chronic inflammation. The increased circulating and tissue proinflammatory
cytokines in obesity may promote osteoclast activity and bone resorption through modifying the receptor activator
of NF-�B (RANK)/RANK ligand/osteoprotegerin pathway. Furthermore, the excessive secretion of leptin and/or
decreased production of adiponectin by adipocytes in obesity may either directly affect bone formation or
indirectly affect bone resorption through up-regulated proinflammatory cytokine production. Finally, high-fat intake
may interfere with intestinal calcium absorption and therefore decrease calcium availability for bone formation.
Unraveling the relationship between fat and bone metabolism at molecular level may help us to develop
therapeutic agents to prevent or treat both obesity and osteoporosis.
Obesity, defined as having a body mass index ≥ 30 kg/m2, is a condition in which excessive body fat accumulates
to a degree that adversely affects health [1]. The rates of obesity rates have doubled since 1980 [2] and as of 2007,
33% of men and 35% of women in the US are obese [3]. Obesity is positively associated to many chronic disorders
such as hypertension, dyslipidemia, type 2 diabetes mellitus, coronary heart disease, and certain cancers [4-6]. It is
estimated that the direct medical cost associated with obesity in the United States is ~$100 billion per year [7].
Bone mass and strength decrease during adulthood, especially in women after menopause [8]. These changes can
culminate in osteoporosis, a disease characterized by low bone mass and microarchitectural deterioration resulting
in increased bone fracture risk. It is estimated that there are about 10 million Americans over the age of 50 who
have osteoporosis while another 34 million people are at risk of developing the disease [9]. In 2001, osteoporosis
alone accounted for some $17 billion in direct annual healthcare expenditure.
Several lines of evidence suggest that obesity and bone metabolism are interrelated. First, both osteoblasts (bone
forming cells) and adipocytes (energy storing cells) are derived from a common mesenchymal stem cell [10] and
agents inhibiting adipogenesis stimulated osteoblast differentiation [11-13] and vice versa, those inhibiting
osteoblastogenesis increased adipogenesis [14]. Second, decreased bone marrow osteoblastogenesis with aging is
usually accompanied with increased marrow adipogenesis [15,16]. Third, chronic use of steroid hormone, such as
glucocorticoid, results in obesity accompanied by rapid bone loss [17,18]. Fourth, both obesity and osteoporosis are
associated with elevated oxidative stress and increased production of proinflammatory cytokines [19,20]. At present, the
mechanisms for the effects of obesity on bone metabolism are not well defined and will be the focus of this review.
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Proinflammatory cytokines are elevated in
obesity
Obesity is associated with low-grade chronic inflamma-
tion. The seminal finding that the expression of a proin-
flammatory cytokine, tumor necrosis factor-a (TNF-a),
is elevated in the adipose tissue of obese mice provided
the first evidence of a link between obesity and inflam-
mation [21]. Later, the discovery of leptin, a small poly-
peptide hormone secreted primarily by the adipocytes,
further supports that adipose is not just a energy storing
organ and it is also an active endocrine tissue [22,23].
Since then, numerous experimental, epidemiological,
and clinical studies have established that obesity is asso-
ciated with a chronic inflammatory response, abnormal
cytokine production, increased acute-phase reactants,
and activation of inflammatory signaling pathways, and
that these processes are involved in and responsible for
the development of obesity-related diseases [24]. In obe-
sity, adipose tissue is infiltrated with an increased
amount of macrophages, which are an important source
of inflammatory cytokines [25,26]. Obese humans
express higher levels of TNF-a in adipose tissue than do
lean individuals [27]. Adipose tissue also produces other
proinflammatory factors including interlukin-6 (IL-6)
and C-reactive protein (CRP) [28,29]. Obesity has also
been implicated in the development or progression of
musculoskeletal diseases such as osteoarthritis, a com-
mon inflammatory bone disease [30]. Numerous studies
have confirmed that increased production of proinflam-
matory cytokines are critical in the development and
progression of obesity-related health disorders [31].
Obese individuals show abnormal circulating levels of

TNF-a, IL-6, CRP, adiponectin and leptin. Adiponectin
and leptin, which also mediate chronic inflammation,
are adipokines produced by adipose tissue. Leptin has
pleiotropic effects that modulate energy expenditure,
appetite, and neuroendocrine functions. Leptin, which is
increased in obesity, has been found to stimulate inflam-
matory responses in humans [32,33]. In contrast adipo-
nectin acts as an anti-inflammatory cytokine which
suppresses TNF-a-induced NF-�B activation [34]. It has
been found that plasma adiponectin concentrations are
lower in obese subjects as compared to non-obese indi-
viduals [35].
In a cross-sectional study of 16,573 individuals in the

third National Health and Nutrition Examination Survey
(NHANES) (1984-1994), logistic regression analysis
showed that odds ratios for an elevated serum CRP
among individuals with a body mass index (BMI) of 25-
< 30, 30- < 35, 35- < 40, and ≥40 were 1.51, 3.9, 6.11,
and 9.30, respectively [36]. In another cross-sectional
study, CRP, IL-6 and leptin were significantly positively
related to degree of adiposity [37].

Proinflammatory cytokines increase bone
resorption
Bone is a dynamic organ that continuously undergoes
significant turnover, a process called modeling/remodel-
ing involving bone resorption by osteoclasts and bone
formation by osteoblasts [38]. Therefore, bone mass at
any particular time reflects the balance between bone for-
mation and resorption. At the cellular level, osteoblast
number and activity decrease while osteoclast number
and activity increase with aging [39,40]. It is now estab-
lished that osteoblasts regulate the recruitment and activ-
ity of osteoclasts through the expression of the receptor
activator of NF-�B ligand (RANKL) and osteoprotegerin
(OPG) (Figure 1). RANKL is expressed on the osteoblast/
stromal cell surface and binds to its receptor, RANK, on
the surface of hematopoietic precursor cells to stimulate
osteoclast differentiation and maturation in the presence
of macrophage colony stimulation factor (M-CSF). OPG,
a decoy receptor secreted by osteoblasts, binds RANKL
to prevent the activation of RANK and, therefore, to pre-
vent osteoclast differentiation and activation [41,42]. It
has been demonstrated that increased osteoclastic activity
and increased bone resorption in postmenopausal
women is positively correlated with the upregulation of
RANKL [39,43,44].
Proinflammatory cytokines including TNF-a, IL-1, and

IL-6 are key mediators in the process of osteoclast dif-
ferentiation and bone resorption. Chronic inflammation
and increased proinflammatory cytokines induce bone
resorption and bone loss in patients with periodontitis
[45], pancreatitis [46], inflammatory bowel disease [47],
and rheumatoid arthritis [48]. It has also been estab-
lished that upregulated proinflammatory cytokines are
primary mediators of osteopenia or osteoporosis. The
accelerated bone loss at menopause is linked to
increased production of proinflammatory cytokines
including TNF-a, IL-1, and IL-6 [20]. These proinflam-
matory cytokines are capable of stimulating osteoclast
activity through the regulation of the RANKL/RANK/
OPG pathway [49,50]. In mice lacking IL-1b and TNF
genes [51] or over-expressing soluble TNF-a decoy
receptor [52], ovariectomy did not cause bone loss.
Blocking the action of IL-1 with an IL-1 receptor
antagonist, or the signaling of TNF-a with a TNF-bind-
ing protein, decreased osteoclast formation and bone
resorption in ovariectomized mice [53]. The significant
increase in the development of osteoarthritis in obese
human subjects is another evidence that chronic inflam-
mation influences bone metabolism [30].

Obesity affects bone turnover
Obesity is traditionally thought to be beneficial to bone
and, thus, to protect against osteoporosis [5,54,55].
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Mechanical loading stimulates bone formation by
decreasing apoptosis and increasing proliferation and
differentiation of osteoblasts and osteocytes [56] through
the Wnt/b-catenin signaling pathway [57,58]. Therefore,
mechanical loading conferred by body weight is part of
the assumption that has led to widespread belief that
obesity may prevent bone loss and osteoporosis [59-63].
However, recent reports have shown that excessive fat

mass may not protect humans from osteoporosis and in
fact, increased fat mass is associated with low total bone
mineral density and total bone mineral content [64-67].
In a cross-sectional study of 60 females between 10 and
19 years of age, the percent of body fat was linked to
suboptimal attainment of peak bone mass [68].
Increased adiposity may also be linked to the increased
risk of bone fracture. For example, in a case-control
study of 100 patients with fractures and 100 age-
matched fracture-free control subjects aged 3 to 19
years, high adiposity are associated with increased risk
of distal forearm fractures [69]. In another large cross-
sectional study of about 13,000 adult men, pre- and
post-menopausal women, percentage of body fat was

positive associated with osteopenia and nonspine frac-
tures [66].
In a leptin-deficient (ob/ob) mouse model for obesity,

mice weighed twice as much as lean mice but had lower
femoral bone mineral density, cortical thickness, and
trabecular bone volume [70]. Obviously the positive
effect of mechanical loading of increased body weight
could not overcome the detrimental effect of leptin-defi-
ciency (or possibly obesity) on bone in these mice. The
apparent competing effects of adiposity and mechanical
loading on bone metabolism remain an active research
area. Research findings suggest that factors other than
body weight are involved in the final outcome of obesity
on bone health.
While research with obese animal model has estab-

lished the negative effects of adiposity on bone metabo-
lism, studies with human subjects continue to be
controversial. Human obesity is a complex issue which
in general involves excessive consumption of other
nutrients, such as protein and minerals, known to influ-
ence bone metabolism [71]. Findings of the effects of
obesity on bone health in humans have been based on

Figure 1 Bone metabolism regulated by adipocytes, osteoblasts, and osteoclasts. Fat accumulation is closely related to bone formation
and resorption. Osteoblasts and adipocytes are derived from a common multipotential mesenchymal stem cell. Osteoclasts are differentiated
from monocyte/macrophage precursors of hematopoietic stem cells origin. Adipocytes secrete several cytokines such as TNF-a, IL-1b, IL-6,
adiponectin, and leptin which are capable of modulating osteoclastogenesis through RANKL/RANK/OPG pathway. IL, interleukin; OPG,
osteoprotegerin; RANK, receptor activator of nuclear transcription factor �B; RANKL, receptor activator of nuclear transcription factor �B ligand;
TNF-a, tumor necrosis factor alpha;
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statistical correlation or modeling rather than controlled
trials. Thus, controlled studies with the obese animal
model are useful for dissecting the mechanisms upon
which excessive fat accumulation affect on bone
metabolism.
Using a diet-induced obese mouse model, we demon-

strated that feeding mice a high-fat diet (45% energy as
fat) for 14 wks decreases trabecular bone volume and
trabecular number in the proximal tibia despite a sub-
stantial increase in body weight and bone formation
markers in cultured BMSC [72]. These structural
changes are accompanied by increases in serum leptin
and TRAP levels, the ratio of RANKL/OPG expression
in cultured osteoblasts, and the number of TRAP-posi-
tive osteoclasts [72,73]. Increased osteoclast activity and
decreased expression of IL-10, an anti-inflammatory
cytokine, by bone marrow-derived macrophages in diet-
induced obese mice have also been reported by others
[74]. High fat-induced obese animals exhibited increased
bone marrow adiposity accompanied by reduced BMD
in different skeletal sites, up-regulation of peroxisome
proliferator-activated receptor g, cathepsin k, IL-6 and
TNF-a [75].
Based on available literature, obesity appears to affect

bone metabolism through several mechanisms. Obesity
may decrease bone formation (osteoblastogenesis) while
increasing adipogenesis because adipocyte and osteo-
blasts are derived from a common multi-potential
mesenchymal stem cell (Figure 1) [76]. For example,
mechanical loading promotes osteoblast differentiation
and inhibits adipogenesis by down-regulating peroxi-
some proliferator-activated receptor gamma (PPARg) or
by stimulating a durable beta-catemin signal [12,13].
Activation of PPARg by thiazolidinediones decreased
osteoblast differentiation, bone mineral density and tra-
becular bone mass while increasing adipocytes differen-
tiation and bone marrow adipose tissue volume
[11,77,78].
Obesity may increase bone resorption through upregu-

lating proinflammatory cytokines such as IL-6 and TNF-
a. These proinflammatory cytokines are capable of sti-
mulating osteoclast activity through the regulation of
the RANKL/RANK/OPG pathway [49,50]. Obesity is sig-
nificantly associated with degenerative and inflammatory
musculoskeletal system [79]. Bone marrow adipocytes
also may directly regulate the osteoclast progenitors,
hematopoietic cells [80]. For example, when expressed
with a dominant-negative form of CCAAT-enhancer-
binding proteins (C/EBP) under the adipocyte fatty-acid-
binding protein 4 promoter, mice cannot form adipo-
cytes [81]. These mice lack white adipose tissue and
have increased bone mineral density [82].
Obesity may affect bone metabolism directly or indir-

ectly through adipocyte-derived cytokines such as leptin

and adiponectin. Obesity is associated with significant
increase in serum leptin [32,33] and decrease in adipo-
nectin [35]. The action of leptin on bone appears to be
complex and both positive [83,84] and negative [85,86]
effects have been reported. It appears that its action
may depend on current leptin status and the mode of
the action (central or peripheral effects). Overproduction
of leptin, as seen in obese animal models, may have
negative effects on bone metabolism [73]. Increased
serum leptin level has been found a negative regulator
of bone mass in a mouse model [85]. Adiponectin is
another cytokine secreted by adipocytes and has anti-
inflammatory effect [34]. In animal model, adiponectin
has been reported to inhibit osteoclastogenesis, reduce
bone resorption, and increase bone mass [87]. Obese
subjects have low serum adiponectin concentrations as
compared to those normal subjects [35]. Increased
secretion of leptin (and/or decreased production of adi-
ponectin) by adipocytes may also contribute to macro-
phage accumulation by simulating transport of
macrophages to adipose tissue [88] and promoting adhe-
sion of macrophages to endothelial cells, respectively
[89].
Finally, a high-fat diet, often a cause of obesity, has

been reported to interfere with intestinal calcium
absorption. Free fatty acids can form unabsorbable inso-
luble calcium soaps and therefore contributing to low
calcium absorption [90-92].
Increased body weight associated with obesity may

counteract the detrimental effects of obesity on bone
metabolism. It is well established that body weight or
body mass index (BMI) is positively correlated with
bone mineral density or bone mass [59,93] and low
body weight or BMI is a risk factor for low bone mass
and increased bone loss in humans [60]. However, stu-
dies indicate the positive effects of body weight could
not completely offset the detrimental effects of obesity
on bone, at least in obese animal models.

Conclusions
Accumulating data suggest that obesity is detrimental to
bone health despite potential positive effects of mechan-
ical loading conferred by increased body weight with
obesity on bones. The decreased bone mass with obesity
may be due to increased marrow adipogenesis at the
expense of osteoblastogenesis, and/or increased osteo-
clastogenesis because of up-regulated production of
proinflammatory cytokines, and/or excessive leptin
secretion, or reduced adiponectin production, and/or
reduced calcium absorption associated with high fat
intake. Understanding the relationship between obesity
and bone metabolism may help identify new molecular
targets that can increase osteoblastogenesis while inhi-
biting adipogenesis and/or decreasing osteoclastogenesis.
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Ultimately, this knowledge may lead us to develop new
therapeutic interventions to prevent both obesity and
osteoporosis.
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