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Abstract
Rheumatoid arthritis (RA), a chronic inflammatory joint disease causing permanent disability, involves exosomes, 
nanosized mammalian extracellular particles. Circular RNA (circRNA) serves as a biomarker in RA blood samples. 
This research screened differentially expressed circRNAs in RA patient plasma exosomes for novel diagnostic 
biomarkers. In this study, samples of RA patients with insufficient response to methotrexate (MTX-IR), combined 
use of tumor necrosis factor inhibitors (TNFi) were followed up for half a year, and 56 circRNA samples of self-test 
data were stratified into training, testing, and external validation cohorts according to whether American College of 
Rheumatology 20% improvement criteria (ACR20) was achieved. A diagnostic xgboost model was developed using 
common hub genes identified by random forest and least absolute shrinkage and selection operator (LASSO), with 
intersection genes derived from overlapping machine learning-selected genes. Diagnostic performance evaluated 
via receiver operating characteristic (ROC) curves using pROC for area under the curve (AUC). Optimal LASSO 
model with 4 circRNAs determined, with AUC > 0.6 for key genes. The model validation performed well on the test 
set, but not significantly on the validation set. Then, circRNA screening was performed in combination with clinical 
data, and cross-validation identified hsa-circ0002715, hsa-circ0001946, hsa-circ0000836, and rheumatoid factor (RF) 
as key genes, among which hsa-circ0002715 and hsa-circ0001946 were emphasized as key markers on the training 
set. In addition, the morphology and size of exosomes and the expression of CD9 and CD81 verified the successful 
extraction of exosomes. The qPCR analysis of plasma exosomes in TNFi patients found that the expression of hsa-
circ0002715 was higher than that in patients who didn’t reach ACR20, and the expression of hsa-circ0001946 was 
lower than that in patients who didn’t reach ACR20. The above studies suggested that hsa-circ0002715 and hsa-
circ0001946 may become markers for predicting MTX-IR RA patients and TNFi precision treatment.
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Introduction
Rheumatoid arthritis (RA) a common autoimmune dis-
ease with systemic impact, is characterized by synovial 
hyperplasia, persistent joint inflammation, and diverse 
extra-articular presentations [1, 2]. Females exhibit a 
higher predisposition to RA, with a prevalence rate of 
3.6%, in contrast to males, who have an estimated risk of 
1.7% [3]. RA not only results in joint deformities and a 
potential for lifelong disability but also markedly elevates 
the risk of comorbidities, notably cardiovascular disease 
and malignancies [4, 5]. Tumor necrosis factor inhibitors 
(TNFi), a representative biological disease-modifying 
antirheumatic drugs (bDMARDs), is the primary second-
line treatment for RA [6, 7]. Nevertheless, a considerable 
proportion of patients experience treatment failure due 
to lack of efficacy [8].

Treatment failure in RA escalates the risk of drug-
related complications and imposes a considerable bur-
den on both patients and society [9]. Hence, predicting 
the efficacy of individualized TNFi regimens for RA 
patients is a research focus for RA treatment. Recently, 
research on the prediction of efficacy in RA patients is 
mainly based on clinical data or conventional biomarkers 
[10]. Multiple studies have leveraged machine learning 
approaches to forecast treatment efficacy by integrating 
clinical, genetic marker, and multi-omics data [11–13]. 
Previous biomarker studies focused on RA’s efficacy 
mechanisms at gene expression and modification levels 
[14, 15]. Further investigation into biomarkers at cellular 
and gene-cell interfaces is crucial for accurate RA diag-
nosis and prediction.

Exosomes are membrane-bound vesicles released into 
the extracellular space subsequent to the fusion of intra-
cellular multivesicular bodies with the plasma membrane 
[16, 17]. Extracellular vesicles also have certain poten-
tial uses in several disease [18, 19]. In addition, exo-
somal circRNA represents an endogenous, highly stable 
non-coding RNA that exhibits aberrant expression pat-
terns in disease states and is amenable to facile collec-
tion and detection [20, 21]. Increasing research reveals 
the role of noncoding RNA in musculoskeletal diseases 
[22–25]. Extensive research has affirmed the pivotal role 
of circRNAs in modulating immune and inflammatory 
responses in RA, underscoring their significance as a cru-
cial biomarker for evaluating RA disease status [26, 27]. 
However, the predictive role of exosomal circRNAs in RA 
prognosis and its potential as personalized indicators of 
the efficacy of second-line TNFi treatment in RA patients 
remains unknown. This study enrolled RA patients who 
failed methotrexate (MTX) initial treatment scheduled 
for TNFi therapy, assessing exosomal circRNA levels in 
their peripheral blood. Patients were followed post-TNFi 
treatment and categorized based on their treatment out-
comes. Subsequently, circRNA was screened for machine 

learning features, and random forest was used to con-
struct a treatment efficacy prediction model based on 
circRNAs indicators and patient clinical characteristics. 
Finally, plasma exosomes were constructed and isolated, 
and circRNA detection was performed for verifica-
tion. This research endeavors to predict TNFi treatment 
effects in RA patients, offering the clinical treatment for 
RA patients.

Materials and methods
Study subjects
Between October and December 2023, patients with 
RA who had poor response to initial MTX treatment 
and continued to use TNFi in combination at the Affili-
ated Hospital of Yangzhou University, followed up for 
half a year, according to the 2010 ACR/EULAR classifi-
cation diagnostic criteria for RA. At baseline, peripheral 
blood samples were procured from these patientsand 
preserved in sodium citrate-containing vacuum tubes. 
Exclusion criteria for healthy controls encompassed 
severe cardiovascular disease, hepatic and renal impair-
ment, inflammatory disorders, malignancies, and other 
immune-mediated conditions (e.g., systemic lupus ery-
thematosus, ankylosing spondylitis). This study was con-
ducted by the Declaration of Helsinki and approved by 
the Ethics Committee of the Affiliated Hospital of Yang-
zhou University [approval number: 2023-YKL10-(05)], 
and all subjects signed written informed consent. We 
collected clinical data from patients, including demo-
graphics (age, gender, etc.), smoking history, serological 
indicators (including RF, anti-CCP, etc.), baseline DAS28-
ESR, DAS28-CRP, CDAI, SDAI, HAQ, SHARP scores, 
etc.

Data Processing
The self-test dataset consisted of 56 circRNA samples, 
which were partitioned into training set, test set and 
external validation set by 0.65, 0.15, and 0.2. Among 
them, feature screening only uses training set and test 
set data, and the validation set is only verified in the final 
model.

Screening and validation of diagnostic markers
This study employed diverse machine learning algo-
rithms, including random forest, least absolute shrinkage 
and selection operator (LASSO) logistic regression, and 
XGBoost, to identify novel key biomarkers for RA [28, 
29]. In this study, the “randomForest” package in R was 
utilized for random forest analysis, while the “glmnet” 
package facilitated LASSO analysis with 10-fold cross-
validation incorporating circRNA and clinical features. 
Additionally, the “caret” package was employed to per-
form random forest and XGBoost analyses, yielding the 
top 20 core genes from each algorithm. Subsequently, an 



Page 3 of 13Li et al. Journal of Orthopaedic Surgery and Research          (2025) 20:109 

intersection of genes identified by these three machine 
learning approaches was computed to obtain the consen-
sus gene set.

The diagnostic efficacy of the identified biomarkers was 
assessed through the construction of receiver operating 
characteristic (ROC) curves for the self-test dataset. The 
area under the curve (AUC) was calculated utilizing the 
“pROC” package to evaluate the diagnostic performance. 
Biomarkers with AUC values exceeding 0.6 were selected 
as the final screened biomarkers.

Construction of random forest diagnostic model
Based on the identified biomarkers, a joint model was 
constructed and validated against both the test set and 
an external validation set to ensure its reliability. ROC 
curves were plotted to evaluate the sensitivity and speci-
ficity of the models, with AUC values calculated to quan-
tify their overall reliability.

Extraction of plasma exosomes and exosomal RNA
Blood samples from 56 RA patients underwent centrifu-
gation at 500 g for 10 min to isolate plasma, which was 
subsequently stored at -80 °C. Prior to exosome isolation, 
plasma samples were centrifuged to eliminate cellular 
debris. Exosomes were then harvested via ultracentrifu-
gation at 150,000 g for 2 h, and their concentration was 
determined using a BCA assay. To facilitate downstream 
analysis, exosomes from each group were pooled. Adher-
ing to the manufacturer’s instructions, exosomal RNA 
was extracted using a rapid total RNA extraction kit.

Transmission electron microscopy (TEM) and nanoparticle 
tracking analysis (NTA) particle size analysis
The purified exosomes were deposited onto a carbon-
coated copper grid, fixed with 2.5% glutaraldehyde, and 
stained with uranyl acetate prior to examination. Subse-
quently, 2% phosphotungstic acid was applied to the grid 
for 2 min, followed by transmission electron microscopy 
(TEM) imaging for analysis.

The Zetaview (Particle Metrix) system was employed 
for nanoparticle tracking analysis. Upon addition of exo-
somes to the instrument’s loading port, it automatically 
determined the hydrodynamic diameter and concen-
tration of the nanoparticles through a combination of 
single-particle tracking technology, classical microelec-
trophoresis (zeta potential), and the principles of Brown-
ian motion, utilizing the Stockes-Einstein equation.

Western blotting
Proteins isolated from exosomes underwent separation 
via 12% SDS-PAGE and were subsequently transferred 
onto a PVDF membrane (Merck, USA). The membrane 
was blocked with 5% BSA in TBST and then probed with 
antibodies against CD9 (ab236630, 1:1000, Abcam) and 

CD81 (ab79559, 1:1000, Abcam). Following incubation 
with HRP-conjugated secondary antibodies, chemilumi-
nescent signals were detected using the ECL method and 
visualized on a Tanon 5200 integrated chemiluminescent 
imager (China).

The validation of diferentially expressed circRNAs
Total RNA extracted from exosomes was reverse tran-
scribed into cDNA using the RevertAid First Strand 
cDNA Synthesis Kit (Thermo, USA). For qPCR, a 20  µl 
reaction mixture was prepared containing 10  µl of 2x 
ChamQ Universal SYBR qPCR MasterMix (Roche, Swit-
zerland), cDNA, and 0.5 µl of each forward and reverse 
primer. Gene expression was quantified relative to the 
housekeeping gene GAPDH.

Statistical analysis
Statistical analyses were conducted using R version 4.3.3 
and GraphPad Prism 9. Comparisons between the two 
sample groups were performed using either the Wil-
coxon rank sum test or t-test, as appropriate. An ROC 
curve was generated, and the sensitivity, specificity, and 
AUC, along with their 95% confidence intervals, were 
evaluated. The p-value less than 0.05 was considered sta-
tistically significant, ns represents p > 0.05, * represents 
p < 0.05, ** represents p < 0.01, and *** represents p < 0.001.

Results
Screening of biomarkers in the circRNA signature 
construction diagnostic model
The clinical data of this group showed that in patients 
who achieved ACR20 after TNFi treatment, the levels 
of biochemical indicators Alanine Transaminase (ALT), 
Aspartate Aminotransferase (AST) and lactate dehydro-
genase (LDH), immunological indicators Erythrocyte 
sedimentation rate (ESR) and C-reactive protein (CRP), 
and rheumatoid arthritis disease assessment indicators 
Disease Activity Score for 28 joints based on the Eryth-
rocyte Sedimentation Rate (DAS28-ESR), and C-reactive 
protein level (DAS28-CRP), the simplified and clinical 
disease activity indices (SDAI, CDAI) decreased 6 months 
after treatment; while in patients who did not achieve 
ACR20, the expressions of neutrophil (NE), platelet 
(PLT), ALT, D-Dimer, anticitrullinated peptides/protein 
antibodies (ACPA), mutated and citrullinated vimentin 
(MCV), RF-IgM, and RF-IgA increased significantly, and 
LDH, CRP, SDAI, CDAI, joint tenderness, and joint swell-
ing decreased 6 months after treatment (Table 1; Fig. 1A-
D). Then, key genes were screened by LASSO regression 
analysis, random forest and xgboost. When 4 circRNAs 
were included in the LASSO model, its performance was 
the best. In random forest and XGBOOST, the weights of 
the top 10 genes were hsa-circ0002715, hsa-circ0001946, 
hsa-circ0000835, etc. (Fig. 2A-C). The intersection of the 
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three key features was taken, and it was found that the 
three RNAs hsa-circ0002715, hsa-circ0001946, and hsa-
circ0000835 were all important, so they were selected as 
key genes (Fig. 2D).

Validation of screening results of biomarkers in the 
circRNA signature construction diagnostic model
We then analyzed whether there were differences in the 
biomarkers in different outcomes and their evaluation 
capabilities. The analysis results showed that only two 
markers had significant differences, but each marker had 
a good ability to predict the outcome, and the AUCs of 
the three-feature box plot and the single-feature ROC 

curve are 0.757, 0.875, and 0.667, respectively, all greater 
than 0.6 (Fig. 3A, B).

Diagnostic modeling of circRNA signature biomarkers
Then, the random forest method was used to model 
the biomarkers and evaluate the constructed valida-
tion model. Both the test set and the validation set were 
used for evaluation. The left side is the test set and the 
right side is the validation set. It can be clearly seen 
from the molecular results that the test set has a better 
effect, but the effect of the validation set is not very obvi-
ous (Fig. 4A, B). Therefore, we further combined clinical 
characteristics for modeling.

Table 1  Clinical features of the participants
TNFi reach ACR20 (n=45) TNFi not reach ACR20 (n = 11)

Male sex, n (%) 6 (12.7) 2 (15.3)
Age (years), mean (SD) 60.4 (13) 59.2 (8.6)
Smoker,n (%) 2 (4.4) 1 (9)
RA disease duration (years), mean (SD) 3.7 (1.5) 8.1 (9.7)
Biochemical indexes and imaging examination Before TNFi 6 months after TNFi Before TNFi 6 months after TNFi
RBC (*10^12/L), mean (SD) 3.8 (0.5) 3.9 (0.6) 3.8 (0.3) 3.9 (0.3)
HB (g/L), mean (SD) 116.6 (13.9) 116.6 (16.7) 118.6 (12.8) 119.5 (11.3)
WBC (*10^9/L), mean (SD) 6.3 (1.8) 6.1 (2.3) 5.9 (1.6) 6.9 (2.5)
NE (*10^9/L), mean (SD) 4.5 (1.7) 4.1 (2.1) 4.1 (1.3) 27.5 (74.8)
PLT (*10^9/L), mean (SD) 199.2 (62.4) 195.4 (64) 197.9 (73.5) 226.9 (61.6)
TG (g/L), mean (SD) 29.3 (5.4) 27.9 (4.9) 30.1 (4.7) 29.9 (7)
ALT (U/L), mean (SD) 31.4 (63) 21.1 (11.9) 19.3 (10.4) 26.1 (17.6)
AST (U/L), mean (SD) 27.1 (25.6) 23.2 (9) 22.4 (6.1) 23.8 (6.7)
LDH (U/L), mean (SD) 249.6 (68.3) 236.1 (77.1) 250 (56.7) 197.8 (50.9)
Cr (umol/L), mean (SD) 63.5 (19.7) 64.5 (20.5) 68.4 (21.8) 76.5 (48.5)
BUN (mmol/L), mean (SD) 6.5 (2.3) 6 (2.1) 5.7 (2.1) 6.4 (2.3)
D-Dimer (mg/L), mean (SD) 0.7 (0.9) 0.5 (0.7) 0.9 (1.2) 1.7 (1.2)
Immunological index
RF (IU/ml), mean (SD) 216 (306.2) 240.2 (541.9) 563.1 (893.5) 163 (279.6)
ACPA (U/ml), mean (SD) 90.9 (97.9) 89.1 (87) 83.3 (61.5) 147.9 (69.6)
RA-33 (AU/ml), mean(SD) 8.3 (20.9) 14.5 (57.4) 10.5 (12.8) 7.6 (10.7)
MCV (U/ml), mean (SD) 275.5 (369.3) 193.8 (288.9) 139.8 (195.2) 420.1 (462.8)
RF-IgG (U/ml), mean (SD) 12.8 (11.7) 20.9 (59.1) 19.8 (26.2) 17.3 (12.4)
RF-IgM (U/ml), mean (SD) 140.7 (249.5) 162.9 (290.5) 345.6 (661.4) 954.7 (1984.6)
RF-IgA (U/ml), mean (SD) 96.4 (196.5) 83 (178) 128.1 (162.1) 436.1 (945.2)
ESR (mm/h), mean (SD) 37.2 (30.5) 14.3 (15) 45 (26.8) 35.8 (21.8)
CRP (mg/L), mean (SD) 17.5 (28.6) 7 (9.6) 28.9 (31.3) 15.8 (20.6)
RA disease assessment index
DAS28-ESR, mean (SD) 5.5 (1.4) 2.3 (1.1) 5.8 (1) 4.7 (1.1)
DAS28-CRP, mean (SD) 4.9 (1.5) 2.3 (0.9) 5.3 (1.1) 4.2 (1.2)
SDAI, mean (SD) 45.9 (42.7) 10.4 (9.7) 51.9 (21) 39.1 (31.1)
CDAI, mean (SD) 30 (14.9) 6.5 (5.5) 29.3 (16.8) 15.7 (8)
SHARP, mean (SD) 49.7 (42.6) 45.9 (38.5) 43.3 (39.4) 47.3 (41.5)
tenderness number of joint, mean (SD) 10.8 (5.2) 1.5 (1.2) 12.2 (5) 6.5 (5.6)
swelling of joint, mean (SD) 10.7 (5.3) 0.4 (0.7) 12 (5.9) 5.8 (6.6)
Pain assessment by patients (1-10cm), mean (SD) 7.2 (1.5) 2.8 (1.2) 7.3 (1.3) 5.7 (1.3)
Overall evaluation of disease activity by patients (PGA), mean (SD) 6.7 (1.3) 2.3 (1.1) 6.8 (1.1) 6.1 (1.6)
Overall evaluation of disease activity by doctors (MDGA), mean (SD) 6.0 (1.3) 1.8 (1.1) 6.4 (1.4) 5 (1.5)
Evaluation of physical function by patients (HAQ), mean (SD) 0.8 (0.4) 0.2 (0.2) 1 (0.5) 0.6 (0.3)
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Biomarker screening based on circRNA combined with 
clinical characteristics
In order to screen biomarkers of circRNA combined 
with clinical characteristics, key genes were screened by 
LASSO regression analysis, random forest and xgboost. 
When the LASSO model contains 4 features, its perfor-
mance is the best (Fig. 5A, B). The weights of the top 10 
genes in random forest and XGBOOST are as follows: 
hsa-circ0002715, hsa-circ0001946, hsa-circ0000836, etc. 
The intersection of the three key features was taken, and 
it was found that the four features of hsa-circ0002715, 
hsa-circ0001946, hsa-circ0000836 and rheumatoid fac-
tors (RF) were all important, so they were selected as key 
genes (Fig. 5C, D).

Validation of biomarker screening results in diagnostic 
models constructed by combining circRNA with clinical 
characteristics
Then, we tested whether there were differences in bio-
markers in different outcomes and their ability to 
evaluate outcomes. The four-feature box plot and the 
single-feature ROC curve showed that only two markers, 
hsa-circ0002715 and hsa-circ0001946, had significant 
differences, and the other features, hsa-circ0000836 and 
RF, had certain trends (Fig. 6A-E).

CircRNA combined with clinical characteristics of 
biomarkers for diagnostic modeling
The random forest method was used to model the bio-
markers and evaluate the constructed validation model. 
Both the test set and the validation set were used for eval-
uation, with the test set on the left and the validation set 
on the right. It can be clearly seen from the ROC curves 

Fig. 1  The clinical data of the groups. (A) Immunological indicators Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid arthritis 
disease assessment indicators Disease Activity Score for 28 joints based on the Erythrocyte Sedimentation Rate (DAS28-ESR), and C-reactive protein level 
(DAS28-CRP); (B) Clinical disease activity index (CDAI) and simplified clinical disease activity index (SDAI); (C) Bone erosion and joint space of both hands 
were evaluated by Sharp-van der Heijde method (Sharp); (D) Efficacy evaluation parameters tenderness number of joint; swelling of joint; Pain assess-
ment by patients (1–10 cm); Overall evaluation of disease activity by patients (PGA); Overall evaluation of disease activity by doctors (MDGA); Evaluation 
of physical function by patients (HAQ)
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of the test set and the validation set that the performance 
of the model has improved, and the AUC of the training 
set has reached 0.778 (Fig. 7A, B). In addition, although 
RF cannot diagnose the outcome, it can significantly 
improve the predictive ability of the circRNA model.

Detection of exosomal circRNA levels in patients’ plasma
Next, we examined the characteristics of exosomes iso-
lated from plasma. Transmission electron microscopy 
(TEM) and nanoparticle tracking analysis (NTA) analysis 
showed that the exosomes had visible double-layer cap-
sules or crescent-shaped ultrastructures, both of which 
were exosome morphology (Fig. 8A). The results of NTA 
particle size analysis showed that the exosome concentra-
tion was 4.3E + 6 particles/ml, the exosome particle size 
was about 105 nm, and the size range was 30 to 200 nm, 

which was consistent with the previous characterization 
of exosomes (Fig. 8B). The presence of exosome surface 
markers (including CD9 and CD81) was confirmed by 
Western blotting, further proving that the isolated par-
ticles were exosomes (Fig. 8C). Then qPCR was used to 
detect the expression of exosomal RNA, and our data 
revealed that in the plasma exosomes of patients with 
TNFi reaching ACR20, the expression of hsa-circ0002715 
was higher than that of patients who did not reach 
ACR20, and the expression of hsa-circ0001946 was lower 
than that of patients who did not reach ACR20, and the 
difference was significant. There was no significant dif-
ference in the other circRNAs (Fig. 9). The analysis flow 
chart of this study is shown in Fig. 10.

Fig. 2  Screening of biomarkers in the circRNA signature construction diagnostic model. (A) Mean square error in Lasso regression versus Log (λ); (B) 
Regression coefficient versus Log (λ); (C) Random forest and xgboost top20 score graph; (D) Venn diagram for machine learning feature selection. The 
numbers represent the number of genes in each interval, and the percentages come from the proportion of the number of genes to all the genes 
screened by the three methods
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Fig. 4  Diagnostic modeling of circRNA signature biomarkers. (A, B) ROC curve of test set and validation set

 

Fig. 3  Validation of screening results of biomarkers in the circRNA signature construction diagnostic model. (A) Feature box plot; (B) Single feature ROC 
curve

 



Page 8 of 13Li et al. Journal of Orthopaedic Surgery and Research          (2025) 20:109 

Discussion
RA is a multifaceted autoimmune disorder marked by 
the aggressive proliferation and infiltration of fibroblast-
like synoviocytes, ultimately resulting in joint destruc-
tion [30, 31]. While the precise pathological mechanisms 
underlying RA remain elusive, exosomes are suspected to 
contribute to disease progression through their ability to 
deliver diverse biomolecules to RA-affected tissues [32]. 
Among the molecules present in exosomes, circRNA 
stands out as a potentially disease-exacerbating factor 
due to its high stability and previously established role in 
the pathogenesis of RA [33–35]. Furthermore, circRNAs 
exhibit robust expression across various tissues, with 
notable enrichment in the human brain and blood [36]. 
However, limited research exists on leveraging circRNAs 
in RA patient’s peripheral blood exosomes to forecast the 
effectiveness of TNFi second-line treatment strategies.

Recent studies have demonstrated that an array of cir-
cRNA species are implicated in the progression of RA 
[37]. Moreover, circRNAs have emerged as biomarkers 
with enhanced specificity for particular diseases and have 
been found to maintain superior stability across diverse 
organisms [38]. Therefore, targeting circRNAs might 
serve as a promising approach for the treatment of RA. 
In this study, we recruited RA patients who had failed 
initial MTX treatment and received TNFi treatment, and 
obtained a total of 56 circRNA samples. The data was 
divided into training set, test set, and external validation 
set, and then the machine learning features of circRNA 
were screened, and a random forest was used to build an 
efficacy prediction model based on circRNA combined 
with clinical features. Finally, plasma exosomes were con-
structed and isolated, and circRNA detection was per-
formed for verification.

Fig. 5  Biomarker screening based on circRNA combined with clinical characteristics. (A) Mean square error in Lasso regression versus Log (λ); (B) Regres-
sion coefficient versus Log (λ); (C) Random forest and xgboost top20 score graph; (D) Venn diagram for machine learning feature selection

 



Page 9 of 13Li et al. Journal of Orthopaedic Surgery and Research          (2025) 20:109 

Previously, a research has explored the regulatory net-
work of programmed cell death genes in rheumatoid 
arthritis based on blood-derived circRNA transcriptome 
information through LASSO analysis [39]. Here, we con-
structed a diagnostic model based on circRNA features, 
screened key genes through LASSO regression analysis, 

random forest and xgboost, and found that the LASSO 
model performed best when it included four circRNAs. 
In random forest and XGBOOST, the weights of the 
top 10 genes were hsa-circ0002715, hsa-circ0001946, 
hsa-circ0000835, etc. Then we took the intersection of 
the three key features and found that hsa-circ0002715, 

Fig. 7  CircRNA combined with clinical characteristics of biomarkers for diagnostic modeling. (A, B) ROC curve of test set and validation set

 

Fig. 6  Validation of biomarker screening results in diagnostic models constructed by combining circRNA with clinical characteristics. (A) Feature box plot; 
(B-E) single feature ROC curve
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Fig. 9  The qPCR was used to detect the expression of exosomal RNA

 

Fig. 8  The characteristics of exosomes isolated from plasma. (A) Transmission electron microscopy photo of exosomes; (B) NTA particle size analysis; (C) 
Western blot for marker detection
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hsa-circ0001946, and hsa-circ0000835 were all impor-
tant, so they were selected as key genes. Our earlier 
research endeavor uncovered that the irregular expres-
sion of circRNA_0001946 stimulates colorectal cancer 
cell proliferation and metastatic potential by modulat-
ing microRNA-135a-5p [40]. We subsequently analyzed 
biomarker differences across various outcome indicators 
and their predictive capabilities, finding that two mark-
ers were significantly distinct, each with good predic-
tive power. Both the AUC of the three-feature box plot 
and the single-feature ROC curve exceeded 0.6. Model-
ing these biomarkers using the random forest method 
showed good performance in the test set but less so in 
the validation set. Therefore, we incorporated clinical 
characteristics into our modeling approach.

In subsequent analyses, we identified circRNA bio-
markers associated with clinical manifestations, optimiz-
ing performance with a four-feature combination using 
the LASSO model. Among the top 10 genes prioritized 
by random forest and XGBOOST, hsa-circ0002715, 

hsa-circ0001946, and hsa-circ0000836 emerged as sig-
nificant. RF analysis further confirmed their importance, 
selecting them as pivotal genes. Evaluation of biomarker 
expression across outcome indicators revealed statisti-
cally significant differences for hsa-circ0002715 and hsa-
circ0001946 (via feature box plots and ROC curves), with 
notable trends for hsa-circ0000836 and RF. Luo et al. also 
identified circular RNA Hsa_circ_0002715 in peripheral 
blood as a novel potential biomarker for new-onset RA 
[41]. In addition, the ROC curves of the test set and vali-
dation set clearly show that the model performance has 
improved, and the AUC of the training set has reached 
0.778. Although RF cannot diagnose the results, it can 
significantly improve the predictive ability of the cir-
cRNA model.

Subsequently, TEM and NTA confirmed the presence 
of exosomes with discernible double-layered or crescent-
shaped ultrastructures, both characteristic of exosome 
morphology, aligning with previous research findings 
[42]. The NTA particle size analysis yielded an exosome 
concentration of 4.3E + 6/ml, with an average particle 
diameter of approximately 105 nm and a size distribution 
spanning from 30 to 200 nm, consistent with previously 
reported exosome characterization outcomes [43]. West-
ern blotting analysis validated the expression of exosomal 
surface markers CD9 and CD81, reinforcing the identity 
of the isolated particles as exosomes [44]. Furthermore, 
qPCR results showed that in the plasma exosomes of 
patients with TNFi who achieved ACR20, the expression 
level of hsa-circ0002715 was higher than that of patients 
who did not achieve ACR20, and the expression level of 
hsa-circ0001946 was lower than that of patients who did 
not achieve ACR20, and the difference was statistically 
significant.

However, this study has certain limitations. First, the 
sample size employed was comparatively modest, neces-
sitating the validation of these findings in larger cohorts 
and diverse demographic groups, encompassing vari-
ous ethnicities and geographical regions. Secondly, the 
investigation did not assess the involvement of hsa-
circ0002715 and hsa-circ0001946 in the etiopathogenesis 
of RA. Consequently, additional experimental endeav-
ors are warranted to examine the potential causal link 
between the aberrant expression of these circRNAs and 
the onset or progression of RA. A deeper understanding 
of the role of circRNAs in RA pathogenesis is prerequi-
site for the routine integration of novel diagnostic and 
therapeutic modalities.
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