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Abstract
Background  Mogroside V (MV) is a triterpene glucoside that reportedly exhibits an array of antitumor, anti-
inflammatory, hypolipidemic, and hypoglycemic properties. In prior studies, our group determined that MV was able 
to readily enhance osteogenic bone marrow mesenchymal stem cells (BMSCs) differentiation under high-glucose 
conditions through mechanisms potentially associated with miR-10b-5p and PI3K/Akt signaling activity. The precise 
molecular basis for these effects, however, remains to be fully elucidated.

Objective  This study aims to explore the potential mechanisms by which MV regulates the osteogenic differentiation 
of BMSCs under hyperglycemic conditions.

Methods  Femoral and tibial BMSCs were isolated from control and diabetic C57BL/6J mice. qRT-PCR was used to 
quantify miR-10b-5p levels. Putative miR-10b-5p target genes were predicted through bioinformatics assays and 
validated in a luciferase reporter assay system. miR-10b-5p expression was inhibited with an antagomiR-10b-5p 
construct, while PI3K/Akt pathway signaling was inhibited with LY294002. Western blotting was used to detect PI3K/
Akt pathway and target gene protein levels, while Alizarin red staining was used to detect calcium nodule deposition 
by BMSCs.

Results  miR-10b-5p upregulation was noted in BMSCs exposed to hyperglycemic conditions. HOXD10 was identified 
as a cell differentiation-related miR-10b-5p target gene in bioinformatics analyses, and the targeting relationship 
between the two was confirmed in a luciferase reporter assay. MV treatment elicited significantly higher levels of miR-
10b-5p expression, PI3K phosphorylation, and calcium deposition, while antagomiR-10b-5p or LY294002 treatment 
reversed these changes, and the opposite trends were observed with respect to HOXD10 protein levels.
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Introduction
The prevalance of diabetes has risen markedly in 
recent years. These patients are exposed to conditions 
of persistent hyperglycemia that place their quality of 
life and overall health at serious risk, such that diabe-
tes remains a major public health concern throughout 
the globe [1, 2]. Diabetes mellitus can contribute to 
an elevated risk of developing periodontitis, further 
impairing glycemic control and exacerbating related 
complications thereof [3]. Osteoporosis and impaired 
bone healing are often observed in diabetic individu-
als when assessing the alveolar bone in edentulous 
areas [4], making implant restoration more challeng-
ing. Chronic hyperglycemia can significantly impair 
BMSCs osteogenic differentiation, interfering with 
normal wound healing after teeth have been extracted 
[5]. In addition to impairing BMSCs proliferation [6], 
hyperglycemia can trigger premature apoptosis [7], 
induce ferroptosis [8], and favor lipogenic differentia-
tion [9]. No reliable therapies have been established 
that are suitable for the management of diabetic alveo-
lar bone defects in clinical settings. As a result, there 
remains a pressing need to devise new approaches to 
managing the impaired healing of these defects in indi-
viduals with diabetes.

Mogroside V (MV) is a natural bioactive compound 
that has recently been reported to exhibit an array of 
functions, including pro-proliferative, antioxidant, and 
anti-inflammatory properties [10–12]. A prior report 
published by our team demonstrated that MV can sig-
nificantly enhance the osteogenic differentiation of 
BMSCs stimulated by high-glucose conditions. Altered 
miRNA expression profiles observed in this context 
highlighted the potential relevance of exploring the 
mechanistic importance of miR-10b-5p and the PI3K/
Akt axis in this cytological context [13].

MiRNAs are pivotal regulators of skeletal homeosta-
sis, with emerging evidence highlighting their roles in 
modulating bone metabolism and degenerative condi-
tions such as osteoarthritis [14]. Earlier reports have 
demonstrated the involvement of miR-10b-5p in dia-
betes regulation. For instance, hepatic expression of 
this miRNA has been demonstrated to be significantly 
elevated as compared to normal control animals [15]. 
Functionally, miR-10b-5p may enhance pancreatic 
β-cell function and can control glucose homeostasis 
[16]. There is also evidence that miR-10b-5p exhib-
its anti-inflammatory functionality [17]. Signaling via 

the PI3K/Akt axis is central to the osteogenic differ-
entiation of mesenchymal stem cells, with PI3K/Akt 
pathway activation inducting the osteoblastic differen-
tiation of human BMSCs [18].

In this study, BMSCs were isolated from diabetic 
mice and exposed to high-glucose culture conditions 
in the presence or absence of MV. A series of experi-
ments were integrated with the results of preliminary 
small molecule high pathway sequencing results to 
investigate the effects of MV on miR-10b-5p levels and 
PI3K/Akt pathway signaling under hyperglycemic con-
ditions to modulate BMSCs functionality. The findings 
provide an evidence-based reference for the applica-
tion of MV as a tool to help remediate the poor alveo-
lar bone defect healing observed in diabetic patients.

Materials and methods
Animals and diabetes models
C57BL/6J mice (males, 3 weeks old; n = 15) from the 
Laboratory of Experimental Animals at Guangxi 
Medical University (Nanning, China) were used for 
this study. These mice had free access to soft food. 
After being allowed 1 week to acclimatize, they were 
assigned at random to normal (N, n = 5) and diabetes 
(DM, n = 10) groups. The Animal Ethics Committee 
of Guangxi Medical University approved this study 
(#2020-0004), which was performed in accordance 
with all relevant guidelines.

Mice in DM group received high-fat diets (20% 
carbohydrate, 20% protein, and 60% fat) for 3 weeks. 
The following week (week 5 of the study), they were 
fasted for 12 h and intraperitoneally injected with 1% 
1% streptozotocin (90  mg/kg; Solarbio, China). Sev-
enty-two hours later, the fasting blood glucose (FBG) 
level was determined using blood collected from the 
tail vein, repeating these measurements on days 7, 14, 
and 21 after STZ injection. FBG ≥ 11.1 mmol/L was 
the threshold used to confirm successful DM model-
ing. The animals in N group received control diets 
with intraperitoneal administration of an equivalent 
amount of citric acid-sodium citrate buffer.

Cell culture
BMSCs were harvested from the femurs and tibiae of 
N and DM mice as in a prior study [19]. BMSCs from 
DM mode mice (DM-BMSCs) were grown with high-
glucose DMEM (H-DMEM; Gibco, USA), whereas 
N-BMSCs were cultured with low-glucose DMEM 
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(L-DMEM; Gibco). The media in both groups con-
tained 15% fetal bovine serum (Gibco) and 1% penicil-
lin/streptomycin (Solarbio, China) and were changed 
every third day. Cells in all groups were cultured in 
a 5% CO2 37  °C incubator with controlled humidity 
(ThermoFisher Scientific, Japan). An inverted micro-
scope (Olympus, Japan) was used to monitor the 
growth and morphology of these cells on a daily basis.

DM-BMSCs were separated into DM and DM + MV 
groups, while BMSCs from mice in the N group were 
considered N-BMSCs. These BMSCs were added to 
6-well plates (1 × 105/well) until 70% confluent, after 
which cells in the N group were treated with low-
glucose osteogenic induction medium, whereas those 
in DM and DM + MV groups were treated with high-
glucose osteogenic induction medium, with the cells in 
the latter group also having MV 6.25 × 10− 3 g/L added 
to their medium.

Flow cytometry
Characteristic BMSCs surface markers were analyzed 
via flow cytometry. Briefly, BMSCs (1 × 107 cells/mL in 
PBS with 0.1% BSA [Biofroxx, Germany]) were stained 
with antibodies specific for CD73, CD90, CD45, and 
CD11b (Solarbio, China) for 30 min at 4 °C away from 
light. They were then assessed via flow cytometry (BD 
Celesta, USA).

qRT-PCR
TRIzol was used to extract total RNA from BMSCs as 
directed by the manufacturer, after which cDNA was 
prepared with a primer sequence RT-PCR kit (Thermo 
Scientific, USA). TBGreen® premixed ExTaq™II (Tli 
RNaseH Plus) (TaKaRa, Japan) was then used to per-
form qRT-PCR analyses, with U6 as a normalization 
control using primers listed in Table 1. Relative expres-
sion was determined with the 2−ΔΔCt method.

Predictive target gene identification
The overlap between the miRDB, TargetScan, and 
miRTarBase databases was used for the prediction of 
miRNA target genes.

Luciferase reporter assay
Wild-type (WT) or mutant (Mut) HOXD10 
sequence variants were synthesized by GeneCham 
and then introduced into the GV272 reporter con-
struct (GeneChem). HEK-293T cells were then 

co-transfected with WT-HOXD10 or Mut-HOXD10 
reporters together with miR-10b-5p or a negative con-
trol construct and a Renilla luciferase reporter vector. 
Following a 48 h incubation, a dual-luciferase reporter 
assay system (UE) was utilized to quantify luciferase 
activity.

Cell treatments
Osteogenic induction was achieved by treating 
BMSCs with group-specific formulations. Specifi-
cally, cells in the N group were treated with low-
glucose osteogenic induction medium, whereas 
cells in DM and DM + MV groups were treated with 
high-glucose osteogenic induction medium, with 
MV supplementation (6.25 × 10− 3 g/L) in the latter 
of these two groups. Cells in DM + MV + antagomiR 
NC and DM + MV + antagomiR-10b-5p groups, cells 
were treated under conditions identical to those 
for DM + MV group with the addition of 50 nmol/L 
antagomiR NC of antagomiR-10b-5p (Bioengi-
neering Biologicals, China), respectively. Cells in 
DM + MV + LY294002 group were treated under con-
ditions identical to those for DM + MV group with 
the addition of 10 μmol/L LY294002 (MedChemEx-
press, Inc., USA). Cells in DM + MV + antagomiR-
10b-5p + LY294002 group were treated with 
high-glucose osteogenic induction medium containing 
6.25 × 10− 3 g/L MV, 50 nmol/L antagomiR-10b-5p, and 
10 μmol/L LY294002. Following induction for 7 days, 
cells were analyzed byqRT-PCRand Western blotting, 
while Alizarin red staining was performed on day 14.

Western blotting
Western blotting was utilized to assess PI3K/Akt path-
way and HOXD10 protein levels. Briefly, cells from 
each treatment group were lysed in separate tubes in 
50 μL of RIPA lysis buffer (Shanghai Yamei Biologicals, 
China), followed by sonication for 5  min to extract 
proteins. Total protein levels in the supernatant frac-
tion were then quantified with a BCA assay (Epilepsy 
Biomedical Technology Co., Ltd., China). After sepa-
rating total protein by 12.5% SDS-PAGE, they were 
transferred to PVDF membranes (Millipore, USA) that 
were probed overnight with antibodies specific for 
β-actin (1:10,000) (Wuhan Three Eagles Biotechnology 
Co., Ltd., China), PI3K (1:1,750), p-PI3K (1:1,250), and 
HOXD10 (1:500) at 4  °C. Following three rinses using 
TBST (Solarbio, China), samples were probed with 
secondary antibodies for 1  h based on dilutions rec-
ommended by the manufacturer, washed three more 
times (10  min/wash), treated with developer solution 
for 90 s in the dark, and then scanned with an imaging 
instrument.

Table 1  Primer sequences
Gene Direction Sequence(5’-3’)
miR-10b-5p F GCGTACCCTGTAGAACCGAATTTGTG
U6 F GGAACGATACAGAGAAGATTAGC

R TGGAACGCTTCACGAATTTGCG
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Alizarin red staining
BMSCs were fixed using 4% paraformaldehyde (Sigma-
Aldrich, USA) for 15  min, after which they were 
stained with ARS solution (Solarbio, China). Osteo-
genic nodules were stained orange-red in color, and 
were imaged via microscopy. The ARS solution was 
then removed by adding cetylpyridinium chloride 
solution (Macklin Biochemical Co., Ltd., Shanghai, 
China). Absorbance at 562  nm was analyzed with a 
plate reader to compare calcium deposition in the dif-
ferent groups based on relative absorbance levels.

Statistical analyses
Western immunoblots were analyzed with ImageJ. 
Data are presented as means ± standard deviation (SD), 
and were compared with one-way ANOVA with SNK-q 
multiple comparisons tests GraphPad Prism 9.5 (USA). 
All analyses were performed three or more times, with 
P < 0.05 being defined as significant.

Results
Morphologic and phenotypic analyses of BMSCs and 
validation of differential miR-10b-5p expression
Both the N-BMSCs and DM-BMSCs in this study 
exhibited spindle-shaped morphology when examined 
on day 7 of culture (Fig. 1a, b). Flow cytometry analyses 
revealed that both N-BMSCs and DM-BMSCs showed 

CD73 and CD90 positivity but were negative for CD45 
and CD11b (Fig.  1c, d), validating successful BMSC 
purification. In PCR andqRT-PCRanalyses, elevated 
miR-10b-5p expression was found in N and DM + MV 
groups in comparison with DM group (Fig. 1e).

Prediction of miR-10b-5p target genes
Next, miR-10b-5p sequences were identified with 
the miRWalk website, after which putative targets 
of this miRNA were identified with the TargetScan, 
miRTarBase, and miRDB databases. Based on the 
overlap between predictions from these three data-
bases, 8 putative target genes were selected (Fig.  2; 
Table  2). A review of published studies demonstrated 
a link between HOXD10 and cellular differentiation, 
prompting further studies of HOXD10 as a target for 
additional validation.

Luciferase-based confirmation of interactions between 
miR-10b-5p and HOXD10
Established WT-HOXD10, Mut-HOXD10, and 
miR-10b-5p fragment sequences are presented in 
Fig.  3a. Co-transfection of WT-HOXD10 and miR-
10b-5p mimics, significant reductions in luciferase 
activity were noted relative to that associated with 
the miRNA-NC, while luciferase activity was not 

Fig. 1  (a) BMSCs in normal control group (Scale bar = 100 μm). (b) BMSCs in diabetic group (Scale bar = 100 μm). N-BMSCs (c) and DM-BMSCs (d) surface 
markers were identified by flow cytometry. (e) Relative miR-10b-5p expression in each group
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significantly affected when Mut-HOXD10 was used 
instead (Fig. 3b).

miR-10b-5p detection
A significant reduction in miR-10b-5p levels was 
noted in DM group compared with the N group 
(P < 0.05), while an increase in levels were seen in 
DM + MV group in comparison with DM + MV 
group (P < 0.05), while these levels were lower in 
DM + MV + antagomiR-10b-5p, DM + MV + LY294002, 
and DM + MV + antagomiR-10b-5p + LY294002 groups 
relative to DM + MV group (P < 0.05) (Fig. 4).

Table 2  Predicted miR-10b-5p target genes
miRNA Predicted Relevant Target Genes
miR-10b-5p ELAVL3, EPHA5, GABRB2, HOXB3, 

HOXD10, MAPKBP1, NR4A3, 
RHPN2, TIAM1

Fig. 4  Relative miR-10b-5p expression in individual groups. Note: #P < 0.05 
vs. N group; *P < 0.05 vs. DM + MV group; ns, not significant

 

Fig. 3  (a) WT- and Mut-HOXD10 3’-UTR sequences for miR-10B-5p. (b) WT- and Mut-HOXD10 3’-UTR luciferase reporter constructs were co-transfected 
into 293T cells along with miR-10b-5p mimics or miRNA negative control constructs. Luciferase activity was quantified at 48 h post-transfection

 

Fig. 2  Intersecting miR-10b-5p target genes
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HOXD10 and PI3K/Akt signaling-related protein analyses
Western blotting analyses revealed significantly higher 
protein levels of HOXD10 in the DM group com-
pared with N group (P < 0.05) (Fig.  5a) while reduced 
levels were noted in DM + MV group in compari-
son with DM group (P < 0.05) and increased levels in 
DM + MV + antagomiR-10b-5p, DM + MV + LY294002, 
and DM + MV + antagomiR-10b-5p + LY294002 groups 
(P < 0.05). A significant reduction in PI3K phosphory-
lation was noted in DM group compared with N group 
(P < 0.05) (Fig. 5b), while these levels were elevated in 
DM + MV group compared with DM group (P < 0.05). 
A decrease in such phosphorylation was also noted in 
DM + MV + antagomiR-10b-5p, DM + MV + LY294002, 
and DM + MV + antagomiR-10b-5p + LY294002 groups 
(P < 0.05).

Alizarin red staining results
In ARS and quantitative analyses, higher levels of cal-
cium nodule deposition were noted in DM groups 
compared with N group (P < 0.05) (Fig.  6), while sig-
nificantly increased calcium deposition was apparent 
in DM + MV group relative to DM group (P < 0.05). 
However, such calcium deposition was inhibited in 
DM + MV + antagomiR-10b-5p, DM + MV + LY294002, 
and DM + MV + antagomiR-10b-5p + LY294002 groups 
(P < 0.05) (Fig. 7).

Discussion
BMSCs undergo appropriate osteogenic differentiation 
to preserve bone homeostasis as a component of the 
normal dynamics of bone metabolism [20]. In patients 
with diabetes mellitus, persistent hyperglycemia can 
severely impair BMSCs osteogenesis, thereby disrupt-
ing the normal balance of bone metabolism [21]. Here, 
exposure to high-glucose conditions was confirmed 
to inhibit BMSCs osteogenesis, whereas this trend 
was reversed by MV exposure, in line with the present 
results.

A previous miRNA-seq analysis conducted by our 
group comparing BMSCs from control, diabetic, and 
MV-treated diabetic mice identified miR-10b-5p as 
the only miRNA that was differentially expressed when 
comparing each of these pairs of groups [13]. There 
have also been some prior reports linking miR-10b-5p 
to osteogenesis and glucose homeostasis. In male 
mice, for instance, miR-10b-5p knockout is associated 
with the onset of diabetes, whereas glucose homeo-
stasis can be improved by injection of an miR-10b-5p 
mimic [22, 23]. The silencing of miR-10b-5p can 
also suppress osteogenic factor expression and pro-
mote apoptotic death in human BMSCs [24]. In some 
reports, a significant reduction in miR-10b-5p levels 
was noted in patients who had recently suffered osteo-
porotic fractures or were affected by postmenopausal 

Fig. 5  HOXD10 and PI3K, p-PI3K protein levels in individual experimental groups. Note: In Fig. 5a, b and A-G respectively correspond to the N (A), DM (B), 
DM + MV (C), DM + MV + antagomir NC (D), DM + MV + antagomiR-10b-5p (E), DM + MV + LY294002 (F), and DM + MV + antagomiR-10b-5p + LY294002 (G). 
#P < 0.05 vs. N; *P < 0.05 vs. DM + MV; ns, not significant
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osteoporosis [25, 26]. Here, the ability of MV to pro-
mote BMSC osteogenic differentiation while exposed 
to high glucose levels was confirmed to be mediated by 
increases in miR-10b-5p expression.

Signaling through the PI3K/Akt axis is central to 
the control of insulin homeostasis and can also shape 
the osteogenic differentiation of BMSCs [27]. Stimu-
lation of the PI3K/Akt axis can induce the osteo-
blastic transformation of human BMSCs, thereby 
driving osteogenesis [28]. PI3K/Akt signaling activity 
can limit oxidative stress, foster improved survival, 
and enhance the osteogenic differentiation of BMSCs 
exposed to high glucose levels [29]. Here, high glu-
cose levels were found to inhibit PI3K activation of 
BMSCs, whereas MV was able to reverse this inhibi-
tor effect. LY294002, the first synthesized PI3K inhibi-
tor, is now widely utilized in studies of the PI3K/Akt 
axis [30]. Treatment with LY294002 was herein found 

to suppress MV-induced PI3K/Akt phosphorylation in 
BMSCs under high-close conditions, while simultane-
ously reversing the osteogenic differentiation of these 
MV-treated cells. The inhibition of miR-10b-5p in 
these cells was also sufficient to suppress MV-induced 
PI3K/Akt phosphorylation. Based on these findings, 
it appears that MV can promote BMSCs osteogenesis 
under hyperglycemic conditions by activating the miR-
10b-5p/PI3K/Akt signaling axis. In one prior report, 
MV was demonstrated to attenuate LPS-induced 
inflammation in RAW264.7 cells by inhibiting PI3K/
Akt pathway signaling [31]. This is in opposition with 
the observed effects of MV on PI3K/Akt signaling in 
the present study, potentially owing to differences in 
the regulation of miR-10b-5p. In one recent report, 
miR-10b-5p was shown to induce PI3K/Akt signaling 
activity in glioma cells, thus promoting their glyco-
metabolic reprogramming [32]. There is also evidence 

Fig. 6  Alizarin red staining results. Note: In Fig.  6, a-n show individual groups, including the N group (a, e), DM group (b, f), DM + MV group (c, g), 
DM + MV + antagomir NC group (d, h), DM + MV + antagomiR-10b-5p group (i, l), DM + MD + LY294002 group (j, m), and DM + MV + antagomiR-10b-
5p + LY294002 group (k, n). In e, f, g, h, l, m, and n 40-fold magnification is shown
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that miR-10b-5p can positively regulate the PI3K/Akt 
axis in HASMCs to suppress stretch-induced apop-
totic death [33]. These links between miR-10b-5p 
and PI3K/Akt activity align with the current find-
ings. Notably, miR-10b-5p was downregulated in cells 
treated with LY294002, suggesting that signaling activ-
ity downstream of PI3K/Akt may feed back to control 
the expression of miR-10b-5p.

HOXD10 has been repeatedly demonstrated to be a 
direct target of miR-10b-5p [34, 35], in line with the 
present results. Members of the HOX gene family are 
core regulators of developmental processes includ-
ing organ formation and cellular differentiation in 
the context of embryogenesis [36]. HOXD10 is an 
abdominal-B homeobox family transcription factor 
with a sequence-specific HOX DNA-binding domain 
[36]. HOXD10 plays a role in chondrogenic differen-
tiation processes in induced pluripotent stem cells 
from humans [37], and prolonged HOXD10 expression 
can reportedly impair endothelial cell migration initi-
ated by growth factors such as basic fibroblast growth 
factor and vascular endothelial growth factor [38]. 
Additional investigations are required to fully clar-
ify the relationship between HOXD10 and impaired 
BMSC osteogenesis under conditions of high-glucose 
exposure.

Conclusion
In summary, the present analyses demonstrated 
the ability of MV to promote BMSCs osteogenesis 
under hyperglycemic conditions through processes 

dependent on miR-10b-5p upregulation. These effects 
were associated with HOXD10 downregulation and 
enhanced PI3K/Akt signaling activity. Given these 
promising results, MV administration at appropriate 
dose levels may be capable of protecting against dia-
betes-induced alveolar bone loss. However, this study 
has several limitations. First, this study lacks in vivo 
experimental validation, such as diabetic mouse bone 
defect models. Second, miR-10b-5p mimics were not 
employed to investigate the effects of miR-10b-5p 
overexpression on HOXD10, the PI3K/Akt pathway, 
and BMSC osteogenesis. Furthermore, the expression 
of osteogenesis-related factors, including Runx2, OPN, 
and OCN, in BMSCs was not examined following the 
inhibition of miR-10b-5p and HOXD10. Therefore, 
future research will specifically address the aforemen-
tioned limitations to further elucidate the osteogenic 
effects and underlying mechanisms of MVs.
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