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Abstract
Background Treatments for distal radius fractures (DRFs) are determined by various factors. Therefore, quantitative 
or qualitative tools have been introduced to assist in deciding the treatment approach. This study aimed to develop a 
machine learning (ML) model that determines the need for surgical treatment in patients with DRFs using a ML model 
that incorporates various clinical data concatenated with plain radiographs in the anteroposterior and lateral views.

Methods Radiographic and clinical data from 1,139 patients were collected and used to train the ML models. To 
analyze and integrate data effectively, the proposed ML model was mainly composed of a U-Net-based image feature 
extractor for radiographs, a multilayer perceptron based clinical feature extractor for clinical data, and a final classifier 
that combined the extracted features to predict the necessity of surgical treatment. To promote interpretability and 
support clinical adoption, Gradient-weighted Class Activation Mapping (Grad-CAM) was employed to provide visual 
insights into the radiographic data. SHapley Additive exPlanations (SHAP) were utilized to elucidate the contributions 
of each clinical feature to the predictions of the model.

Results The model integrating image and clinical data achieved accuracy, sensitivity, and specificity of 92.98%, 
93.28%, and 92.55%, respectively, in predicting the need for surgical treatment in patients with DRFs. These findings 
demonstrate the enhanced performance of the integrated model compared to the image-only model. In the Grad-
CAM heatmaps, key regions such as the radiocarpal joint, volar, and dorsal cortex of the radial metaphysis were 
highlighted, indicating critical areas for model training. The SHAP results indicated that being female and having 
subsequent or concomitant fractures were strongly associated with the need for surgical treatment.

Conclusions The proposed ML models may assist in assessing the need for surgical treatment in patients with DRFs. 
By improving the accuracy of treatment decisions, this model may enhance the success rate of fracture treatments, 
guiding clinical decisions and improving efficiency in clinical settings.
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Introduction
Distal radius fractures (DRFs) are the most common 
types of upper extremity fractures [1], with their preva-
lence increasing as society enters a super-aging era [2]. 
They commonly occurs in older patients with osteoporo-
sis or in postmenopausal women [3]. Treatment options 
for DRFs can generally be divided into conservative, such 
as cast immobilization, and surgical methods, includ-
ing open reduction and internal fixation. Deciding on 
the treatment method for patients with DRFs is highly 
dependent on whether the degree of fracture displace-
ment and joint incongruency observed on plain radio-
graphs and computed tomography scans falls within an 
acceptable range [1]. However, the decision to pursue 
surgical treatment is often influenced by factors such as 
the clinical experience of the orthopedic surgeon, surgi-
cal demands of the patients, and other factors such as 
age, gender, and pre-existing health conditions [4].

Older patients with DRFs often have various underly-
ing conditions [5], which can lead to debates regard-
ing the appropriate treatment approach. Orthopedic 
surgeons frequently encounter difficulties in deciding 
whether to offer surgical treatment to correct bone mis-
alignment and restore joint congruency, despite the risks 
of complications associated with surgery such as anesthe-
sia side effects, reduced joint mobility, and postoperative 
infections, or to opt for conservative treatment to avoid 
the aforementioned risks while accepting the risk of wrist 
deformity or joint incongruency. Furthermore, determin-
ing which treatment option is the best from patients’ per-
spective, particularly in clinical settings, is often difficult. 
This is a common issue in not only DRFs but also frac-
tures in other areas.

In recent years, many studies have reported findings 
using machine learning (ML) models in orthopedics [6]. 
These studies have included fracture detection and classi-
fication, bone age calculation, assessment of the arthritis 
severity, determination of implant types, and evaluation 
of fracture risks [7]. These advancements may have con-
tributed to improving diagnostic accuracy and treat-
ment planning in orthopedics. In particular, previous 
ML research on fracture detection and classification has 
provided a strong basis for identifying and categorizing 
various fracture types, which is crucial for developing 
appropriate treatment plans [8, 9, 10, 11]. Furthermore, 
ML studies on osteoarthritis or rheumatoid arthritis have 
emphasized the influence of patient demographics, such 
as age and underlying health conditions, on treatment 
decisions [12]. In fracture research, many studies have 
focused on developing ML models to detect fractures 
and classify fracture types in areas such as the spine, hip, 
humerus, and scaphoid [13, 14, 15, 16, 17, 18]. More-
over, recent studies on the development of ML models 
for detecting DRFs and predicting the risk factors for 

postoperative complications following open reduction 
and internal fixation surgery for DRFs have been pub-
lished [19, 20, 21]. However, no ML models have been 
developed for determining treatment plans after diagnos-
ing fractures, including DRFs.

Recently, numerous studies in the field of medical ML 
have emphasized the training of models through the 
integration of multimodal data, rather than relying on 
a single data type [22]. Integrating different data forms 
may contribute to the development of more robust and 
accurate models, significantly enhancing their potential 
for application in diagnosis and treatment [22]. Several 
studies have investigated the use of combined image and 
clinical data for training ML models, among the differ-
ent approaches to data integration [23, 24, 25]. However, 
the integration of image data and clinical data has not 
been applied to ML research for fracture management in 
orthopedics.

Therefore, the objective of this study was to develop a 
ML model that determines the need for surgical treat-
ment in patients with DRFs by incorporating clinical data 
concatenated with radiographs in the anteroposterior 
(AP) and lateral views. Through this, we aimed to assist 
in determining the treatment option for DRFs.

Materials and methods
Datasets
The study protocol was approved by the institutional 
review board of a university hospital (IRB No. KBSMC 
2023-01-044) and the requirement for obtaining 
informed consent was waived. A total of 1,766 patients 
aged ≥ 18 years who received conservative treatment for 
DRFs between January 2001 and December 2023 were 
initially included in this study. The inclusion criteria were 
as follows: (1) plain radiographs taken in AP and lateral 
views with a resolution of ≥ 300 dpi, (2) plain radio-
graphs taken before fracture reduction, (3) closed growth 
plate, and (4) accessible clinical information in the elec-
tronic medical records. Collected clinical data included 
the patient’s age, gender, injured side, body mass index 
(BMI), and the presence of concomitant or subsequent 
fractures. Patients whose plain radiographs could not be 
analyzed because of bone obstruction by a cast or splint 
were excluded. Ultimately, radiographs and clinical data 
from 1,139 patients were analyzed in the study. The plain 
radiographs were obtained using GC85A (Samsung Elec-
tronics Co., Ltd., Suwon, Republic of Korea) plain radi-
ography equipment, and the images were extracted in 
JPEG format. The original images had a pixel resolution 
of 1452 × 1816 and a size of 0.085 mm/pixel.

Image labeling
Three upper extremity musculoskeletal system experts 
(SWH, EK, and HJP) individually assessed the need for 
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surgical treatment using plain radiographs and the clini-
cal information of each patient, with each expert blinded 
to the others. No formal expert training or calibration 
session was conducted before image labeling. Each case 
was assessed twice by three experts. If all six assessments 
matched, the score was accepted; consensus discussion 
was employed to resolve disagreements. The need for 
surgical treatment by each patient was evaluated as either 
“surgery required (yes)” or “surgery not required (no),” 
and this information was annotated to each patient’s 
case for supervised ML. The reliability of the assessments 
regarding the need for surgical treatment was evaluated 
using the intra-class correlation coefficient (ICC). First, 
inter-observer reliability was evaluated using ICC with 
two-way random effects and absolute agreement with 
the mean of the multiple measurements model (ICC [2, 
k]). Then, intra-observer reliabilities were evaluated by an 
ICC using two-way random effects and absolute agree-
ment with the single measurement model (ICC [2, 1]). 
Intra-observer reliability was determined by evaluating 
each quality score at 2-week intervals to ensure indepen-
dent assessments.

Data composition and augmentation
The dataset was obtained through random sampling and 
divided into training, validation, and test sets. The sets 
were distributed in an approximate ratio of 16:4:5. There-
fore, 728, 183, and 228 cases were assigned to the train-
ing, test, and validation sets, respectively, and 1456, 366, 
and 456 images were assigned to the training, test, and 
validation sets, respectively. All radiographic images were 
resized to 512 × 512 pixels and normalized. To enhance 
model generalization, the images were subjected to ran-
dom augmentation. Each augmentation technique was 
applied independently and probabilistically based on its 
specified probability, allowing multiple transformations 
to be applied simultaneously to a single image. Table  1 
shows a detailed summary of the parameter settings 

and application probabilities for each augmentation. To 
avoid bias in performance evaluation, these augmenta-
tions were applied only during training and not during 
validation or testing [26]. Additionally, to ensure numeri-
cal stability, the clinical data features were normalized by 
min–max scaling [27].

ML architecture and details
ML models were developed using Pytorch (version 2.5.1, 
Meta AI, CA, USA) ML framework and the Python (ver-
sion 3.10.12) programming language. The specific devel-
opmental environments are summarized in Table  2. 
Model training was performed by utilizing only radio-
graphic images (image-only model) and incorporating 
clinical data to enhance predictive performance (model 
integrating image and clinical data).

Figure 1 shows the U-Net based image feature extrac-
tor for the radiographic images [28]. It processes the AP 
and lateral radiographic views of each patient to capture 
pixel-level hierarchical features from the plain radio-
graphs. As shown in Fig. 1, these extractors follow a fully 

Table 1 Data augmentation strategy and details
Augmentation Type Function Parameter Augmentation Details Prob-

ability
Cropping Random Re-

sized Crop
Crop Area Scale A value is randomly selected between -50% and 50% of the original image 

area is cropped and resized into output size (output size = 512 × 512 × 3)
1.0

Flip Horizontal Flip Flip Direction The image is flipped horizontally (mirrored along the vertical axis) 0.5
Color Adjustment Color Jitter Brightness A value is randomly selected between -50% and 50% of the original value 0.5

Contrast A value is randomly selected between -50% and 50% of the original value 0.5
Saturation A value is randomly selected between -50% and 50% of the original value 0.5
Hue A value is randomly selected between -10% and 10% of the original value 0.5

Solarization Threshold Any pixel with a value above 128 of the images (on a scale of 0–255) are 
inverted (original value range = 0–255)

0.5

Brightness/Contrast Random Bright-
ness Contrast

Brightness Limit A value is randomly selected between -20% and 20% of the original value 0.2

Optical Distortion Optical 
Distortion

Distort Limit A value is randomly selected between -5% and 5% of the original value 0.5
Shift Limit A value is randomly selected between -5% and 5% of the original value

Table 2 Hardware and software environment specification
Hardware Product and manufacturer 

name
De-
tailed 
features

CPU Intel Xeon Gold 6442Y 24-core, 
4.0 GHz 
boost 
clock

RAM SAMSUNG DDR5 PC5-4800 128 GB
GPU NVIDIA RTX4090 GDDR6X, 

24 GB
Software Detailed features
Operating system Ubuntu 22.04 with CUDA 11.5/CuDNN 

8.1.0
Machine learning 
framework

PyTorch version 2.5.1

CPU, Central processing unit; RAM, Random access memory; GPU, Graphic 
processing unit
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convolutional encoder–decoder architecture with skip 
connections and a bottleneck layer. The encoder pro-
gressively extracts multiscale structural features through 
convolutional layers that include batch normalization 
and rectified linear unit (ReLU) activation, followed by 
max pooling for spatial downsampling. The bottleneck 
layer refines these representations by extracting high-
level semantic features, thereby enhancing the ability of 

the model to differentiate structural patterns in radio-
graphic images. The decoder restores spatial details 
through skip connections, which create direct pathways 
between the corresponding encoder layers to recover 
fine-grained anatomical structures that may have been 
lost during encoding. Ultimately, a 1 × 1 convolutional 
layer compresses the high-dimensional feature space into 
a compact representation while preserving spatial integ-
rity, ensuring its suitability for classification (Supplemen-
tary Fig. 1). The extracted feature maps from the AP and 
lateral radiographic views were then concatenated and 
passed into the final classifier, enabling the model to ana-
lyze fractures from multiple perspectives (Fig. 2A, image-
only model).

The image and clinical data-integrating model was 
trained through the following steps. First, as in the image-
only model, the radiographics were processed through 
a U-Net-based image feature extractor. Next, the clini-
cal data were analyzed using a clinical feature extractor, 
implemented as a multilayer perceptron consisting of two 
fully connected layers and ReLU activation [29]. The fea-
tures extracted from both modalities were concatenated 
and passed into the final classifier, allowing the model to 
leverage complementary information to improved pre-
dictive performance (Fig. 2B).

Fig. 2 Overview of the prediction models. A. Model utilizing only radiographic image data as input. Image features are extracted through an image fea-
ture extractor and fed into a classifier to generate predictions. B. Model integrating both radiographic images and clinical data (e.g., age and BMI). Clinical 
features were extracted using a clinical feature extractor and concatenated with image features before being passed to the classifier. Integrating image 
and clinical data leverages complementary information, potentially improving predictive performance

 

Fig. 1 U-net based image feature extractor for plain radiograph images
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The proposed model was trained using cross-entropy 
loss and optimized with the Adam optimizer, where the 
learning rate, first moment decay rate, second moment 
decay rate, and weight decay were set to 1.0 × 10− 5, 0.9, 
0.999, and 1.0 × 10− 6, respectively. A batch size of 8 was 
used, and training proceeded for 200 epochs, with early 
stopping based on validation loss with a patience param-
eter of 10 to prevent overfitting. To identify the regions 
in the images that contributed most significantly to the 
model’s prediction, the Gradient-weighted Class Acti-
vation Mapping (Grad-CAM) method was employed. 
This method provides a visual interpretation of model’s 
prediction by highlighting the most relevant regions in 
the image [30]. A masking-based training strategy was 
implemented to assess the actual contribution of the 
regions highlighted by Grad-CAM to the decision-mak-
ing process of the model. We conducted additional model 
training by excluding the regions highlighted by the 
Grad-CAM as follows: (1) A machine learning model was 
initially trained using the original training set images. 
(2) The trained model was used to generate Grad-CAM 
heatmaps for the training set images. (3) Each Grad-
CAM heatmap was normalized to a range of [0, 1]. (4) 
Regions with high activation values exceeding a given 
threshold were masked. Pixels with values above the des-
ignated threshold (e.g., 0.5, 0.8, and 1.0) were set to zero, 
whereas those below the threshold retained their original 
values. (5) New models were subsequently trained using 
the modified training set images corresponding to each 
threshold. The performance of the retrained models was 
evaluated using the unmodified test set to determine the 
contribution of the regions highlighted by Grad-CAM to 
the decision-making process of the models. Additionally, 
the SHapley Additive exPlanations (SHAP) were utilized 
to quantify the relative contributions of each clinical fea-
ture to the model predictions [31]. It provides feature-
specific explanations, enabling a clearer understanding 
and more informed clinical decision-making based on 
patient-specific data.

Statistical analysis
The diagnostic performances of the ML models were 
evaluated by calculating the area under the curve (AUC) 
from the receiver operating characteristic (ROC) curve, 

along with metrics such as accuracy, sensitivity, speci-
ficity, positive predictive value, and negative predictive 
value. The calculated performance indicators are pre-
sented in Table 3.

The McNemar test was used to evaluate the statisti-
cal significance of the difference in classification perfor-
mance between the image-only model and the image and 
clinical data integrating model; both have a dichotomous 
dependent variable. To assess whether a statistically sig-
nificant difference exists between the AUCs of the two 
models, DeLong’s test was employed. The Shapiro–Wilk 
and Kolmogorov–Smirnov normality tests revealed that 
the clinical data were normally distributed. Therefore, 
the chi-square or independent t-test was used to assess 
whether a significant difference exists in the clinical data 
between patients who required surgery and those who 
did not. Because five simultaneous comparisons were 
performed in the chi-square and independent t-tests, 
a Bonferroni correction was applied. Statistical signifi-
cance was defined as P < 0.05 for the McNemar test and 
DeLong’s test, and P < 0.01 (0.05/5) for the chi-square 
and independent t-tests. All statistical analyses were per-
formed using scikit-learn Python library (version 1.5.0).

Results
Table  4 presents the clinical characteristics of the study 
participants, and Table 5 shows the intra-observer [ICC 
(2, 1)] and inter-observer [ICC (2, k)] reliabilities for the 
expert assessments. With ICC values ≥ 0.9 indicating 
excellent reliability [32], the intra- and inter-observer 
reliabilities for the quality assessments were acceptable.

Figure  3A and B illustrate the confusion matrices for 
the image-only model and the image and clinical data 
integrating model, respectively. The image-only model 

Table 3 Performance indicator formulas
Performance indicator Formulas
Accuracy True positive + True negative / True posi-

tive + False positive + True negative + False 
negative

Sensitivity True positive / True positive + False negative
Specificity True negative / True negative + False positive
Positive predictive value True positive / True positive + False positive
Negative predictive value True negative / True negative + False 

negative

Table 4 Clinical characteristics of the studied patients
Characteristics Surgery not 

required
Surgery 
required

Total P value

Participants 480 659 1139
Mean age (yr) 54.88 ± 16.51 

(19–93)
63.09 ± 15.93 
(19–96)

59.63 ± 16.67 < 0.001*

Gender (Men / 
Women)

190 (39.6%) / 
290 (60.4%)

158 (24.0%) / 
501 (76.0%)

348 / 791 < 0.001*

Affected sides 
(Right / Left)

329 (50.0%) / 
329 (50.0%)

229 (34.7%) / 
250 (65.3%)

558 / 579 0.465

Body mass index 
(kg/m2)

24.62 ± 3.74 
(16.9–46.6)

23.93 ± 3.52 
(14.9–35.7)

24.22 ± 3.63 0.002*

Presence of 
subsequent or 
concomitant 
fracture (No / Yes)

374 (77.9%) / 
106 (22.1%)

532 (80.7%) / 
127 (19.3%)

906 / 233 0.245

Descriptive values are shown as mean ± standard deviation (range) or number 
of cases (proportion (%)); Statistical differences between the two groups were 
analyzed using the independent t-test for continuous variables and the Chi-
square test for categorical variables
*Adjusted P < 0.01 by chi-square test and independent t-test
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correctly classified 114 cases as requiring surgery and 90 
cases as eligible for conservative treatment, with 18 and 
6 misclassified cases in each category, respectively. In 
contrast, the image and clinical data-integrating model 
correctly classified 125 cases as requiring surgery and 
87 cases as eligible for conservative treatment, with only 
9 and 7 misclassified cases, respectively. Table  6 shows 

the diagnostic performances metrics of the ML models. 
Although the integrating model showed slightly better 
accuracy and sensitivity, the McNemar test revealed no 
statistically significant difference in the classification per-
formance between the models (P = 0.573). Figure 4 illus-
trates the ROC curves of both ML models with a 95% 

Table 5 Intra-observer and inter-observer reliabilities of expert 
assessments
Experts ICC (2, 1) for intra-observer 

reliability
ICC (2, k) 
for inter-
observer 
reliability

SWH 0.962 0.965
HJP 0.971
EK 0.960
ICC (2, 1), intra-class correlation coefficient (ICC) using 2-way random effects 
and absolute agreement with the single measurement model; ICC(2, k), ICC 
using 2-way random effects and absolute agreement with the mean of multiple 
measurements model

Table 6 Diagnostic performances of current machine-learning 
models
Model type
Performance indicator

Image only Image 
data + Clin-
ical data

Accuracy (%) 89.47 92.98
Sensitivity (%) 86.36 93.28
Specificity (%) 93.75 92.55
Positive predictive value (%) 95.00 94.69
Negative predictive value (%) 83.33 90.62
AUC 0.9751 0.9841
* Descriptive values are presented as percentages or actual values

AUC, area under the curve

Fig. 4 Receiver operating characteristic (ROC) curve of the models (image-only model and image and clinical data integrating model). A. Comparison 
of ROC curves between the two models. B. ROC curve for the image-only model, including the 95% confidence interval (CI). C. ROC curve for the image 
and clinical data integrating model, including the 95% CI

 

Fig. 3 A. Confusion matrix of the image-only model. B. Confusion matrix of the image and clinical data integrating model
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confidence interval. The integrated model showed a mar-
ginal increase in the AUC compared to the image-only 
model; however, DeLong’s test did not reveal a statisti-
cally significant difference (P = 0.310).

Figure 5 presents the results of the Grad-CAM analy-
sis in the image and clinical data-integrating ML model. 
The Grad-CAM heatmaps exhibited that the radiocarpal 
joint, volar, and dorsal cortex of the radial metaphysis 
were highlighted regions for model training. Supplemen-
tary Fig. 2 presents the classification performance of the 
models that were retrained using the masking-based 
training strategy, with different threshold values applied 
to the Grad-CAM heatmaps. As the threshold decreased 
and a greater portion of the Grad-CAM-highlighted 
regions were masked, the model performance deterio-
rated accordingly. These results quantitatively demon-
strate that the regions highlighted by the Grad-CAM 
not only serve as a visual explanation, as shown in Fig. 5, 
but also contribute substantially to the decision-making 
process of the model. Figure 6 displays the results of the 
SHAP analysis in the image and clinical data integrat-
ing ML model. The results indicated that female gender 
and the presence of subsequent or concomitant fractures 
were more strongly associated with the need for surgical 

treatment, whereas older age and lower BMI were weakly 
associated with the need for surgical treatment.

Discussion
Surgical decision-making is a complex process influenced 
by various factors, including the emotions and values of 
patients and caregivers, medical resource availability, 
rapport between patients and surgeons, time constraints, 
and individual judgments [33]. Surgical decision-making 
includes determining the appropriate surgical method 
and extent, deciding the time for surgery, and determin-
ing whether or not to perform surgery [34]. Determining 
whether to perform surgical treatment is a pivotal aspect 
of the surgical decision-making process. In this study, a 
ML model that can determine the need for surgical treat-
ment in patients with DRFs was trained using a data-
set that combines image data and clinical information. 
Accordingly, this study aimed to provide appropriate 
evidence for evaluating the need for surgical treatment 
and suggest the capability of the ML model as a decision-
support tool.

The aforementioned results indicated that the accu-
racy of the two trained models was approximately 90%, 
and the image and clinical data-incorporating model had 
approximately 3% higher accuracy than the image-only 

Fig. 5 A. Gradient-weighted Class Activation Mapping (Grad-CAM) visualization on anteroposterior wrist radiograph images. The heatmap indicates 
that the congruency of the radiocarpal joint (white arrow) was a critical region for model training. B. Grad-CAM visualization on lateral wrist radiograph 
images. The heatmap shows that the volar cortical disruption of the radial metaphysis (white arrow) and dorsal metaphyseal comminution (red arrow) 
were critical regions for model training
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Fig. 6 A. SHapley Additive exPlanations (SHAP) values for clinical features in predicting the need for surgery (surgery required). Each dot represents a 
SHAP value for a single patient’s feature, with its position indicating the degree of influence on the model’s decision and its color representing the fea-
ture’s value (red = high, blue = low). B. SHAP values for clinical features in predicting the need for surgery (surgery not required), following the same format 
as Fig. 6A, illustrating how these features influenced cases where surgery was not required. C. Mean absolute SHAP values across both classes, offering a 
global perspective on feature importance in the model’s decision-making
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model. This yield is comparable to, or slightly lower than, 
the performance of previous deep-learning models that 
focus exclusively on detecting fractures or classifying 
fracture types [35, 36, 37, 38]. Decisions regarding surgi-
cal treatment for fractures can be influenced by the type 
and severity of fractures observed in the radiographic 
images and factors such as the patient’s age, gender, and 
underlying conditions [39, 40]. Moreover, the surgeon’s 
preference and availability of hospital resources can also 
influence the decision-making process [33]. Therefore, 
surgical treatment decisions may be influenced by dif-
ferent clinical circumstances and subjective factors that 
were not included in the current model training. Conse-
quently, model training using limited data could lead to 
inherent accuracy limitations. Nevertheless, the accuracy 
of approximately 90% of both models might be sufficient 
for diagnostic performance. Moreover, the better perfor-
mance of the image and clinical data-integrating model 
compared with the image-only model indicates that 
incorporating clinical data in model training could play a 
crucial role in improving model’s performance.

Although the difference in the AUC did not reach sta-
tistical significance based on DeLong’s test, the observed 
improvement in AUC may still be considered clinically 
meaningful. The integrated model consistently yielded 
slightly superior results across multiple evaluation mea-
sures. This finding may be important from a clinical 
perspective, even if not statistically significant. In clini-
cal situations such as surgical decision-making, which 
must carefully consider individualized patient factors, 
even small differences in predictive accuracy may influ-
ence treatment strategies. Furthermore, while the abso-
lute increase in AUC may appear numerically small, this 
improvement can be regarded as meaningful when con-
sidering the dimensional disparity between the image 
and clinical data. The image data consisted of high-
dimensional pixel-level features (512 × 512 × 3) from AP 
and lateral radiographic views. In contrast, the clinical 
data included only a few low-dimensional scalar vari-
ables such as age, gender, injured side, BMI, and the pres-
ence of concomitant or subsequent fractures. Despite the 
overwhelming volume and richness of the image features, 
the integrated model demonstrated further performance 
improvement over the image-only model by incorporat-
ing a small set of low-dimensional clinical features. This 
indicates that the addition of clinical information pro-
vided a complementary value that was not adequately 
represented by the image-only model. Although the 
improvement may not reach statistical significance 
according to standard statistical criteria, it reflects the 
benefit of multimodal integration, particularly in clini-
cal settings where context-specific variables are critical in 
guiding surgical decision-making.

The results of the Grad-CAM analysis showed that 
the radiocarpal joint on AP radiographs and the volar 
and dorsal cortex of the radial metaphysis on lateral 
radiographs were important regions in determining the 
need for surgical treatment. A previous retrospective 
study indicated that surgical treatment for intra-artic-
ular DRFs may achieve improved functional outcomes 
[41]. Another study evaluated the risk factors associated 
with re-displacement following DRF reduction, identify-
ing the initial degree of displacement and advanced age 
as significant risk factors [42]. In addition, in displaced 
DRFs, surgical treatment is more effective than nonsur-
gical treatment in improving radiographical and func-
tional outcomes [43]. Therefore, based on a synthesis of 
the results of previous studies, the results of the Grad-
CAM analysis in the present study imply that anatomical 
reduction followed by internal fixation may be necessary 
in cases of radiocarpal joint incongruency, volar corti-
cal disruption of the distal radial metaphysis, and dorsal 
metaphyseal comminution. This might be considered 
joint incongruency, which significantly increases the risk 
of traumatic arthritis. In addition, the volar cortical dis-
ruption in the radial metaphysis and dorsal metaphyseal 
comminution could contribute to the progression of frac-
ture displacement.

In this study, the SHAP results indicated that the 
female gender was most strongly associated with the 
need for surgical treatment, followed by the presence of 
subsequent or concomitant fractures. Compared with 
women, men typically have a larger skeletal structure 
and greater bone mass, which contributes to a lower inci-
dence of stress and osteoporotic fractures [44]. In this 
study, the distribution of clinical data revealed the higher 
prevalence of fractures among women than among men, 
and the proportion of women was also higher in the 
group requiring surgical intervention. Moreover, the con-
servative treatment of concomitant fractures can disrupt 
early mobilization and delay rehabilitation associated 
with recovery [45]. These factors might influence the fea-
ture importance scores in the SHAP analysis.

Another notable result from the SHAP analysis was 
that left-side fractures were more likely to require surgi-
cal treatment than right-side fractures. This may be due 
to the equal distribution of left- and right-side fractures 
in the non-surgical group, whereas the surgical group 
had a slightly higher proportion of left-side fractures. 
However, given the lack of significant differences in the 
left- and right-side fracture distributions between the 
two groups, establishing its clinical relevance is challeng-
ing. The SHAP analysis also indicated a weak association 
among older age, lower BMI, and the need for surgical 
treatment. This might be associated with aging and lower 
BMI values, which contribute to the reduction in bone 
mineral density [46, 47]. However, several studies have 
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reported varying conclusions regarding the influence 
of age and BMI on increasing fracture severity and the 
need for surgical treatment [48, 49, 50, 51, 52]. They have 
included patient populations with diverse characteristics 
such as race, age, and gender, employed a retrospective 
design and analyzed various types of fractures. These fac-
tors may have contributed to the variability in their find-
ings. Therefore, the SHAP analysis results may need to be 
carefully interpreted, and ongoing model training with a 
larger clinical dataset may be necessary.

The integrated ML model trained in this study identi-
fied several features that might be associated with sur-
gical decision-making, such as female gender and the 
presence of concomitant or subsequent fractures; how-
ever, such features are not currently addressed in clinical 
practice guidelines for the management of DRFs [1, 43]. 
This discrepancy indicates a potential limitation in the 
current evidence-based guidelines, which may not yet 
incorporate up-to-date insights obtained through ML 
models. As the clinical utility of ML models continues to 
be validated through high-quality studies, future updates 
to treatment guidelines may be enhanced by integrat-
ing these predictive features to better support surgical 
decision-making.

In a previous study, a ML model was developed to 
determine the need for surgical treatment in patients 
with skeletal malocclusion using simple radiographs [53]. 
In that study, supervised ML was conducted using only 
radiographic data from two views, without concatenat-
ing clinical information in the analysis. However, deter-
mining the need for surgically treating DRFs based solely 
on radiographs is insufficient. The patient’s age, presence 
of underlying conditions, desire for surgery, and adher-
ence to postoperative rehabilitation are also considered 
important decision-making factors [39, 40]. Therefore, 
combining image data and clinical situation is necessary 
when making decisions in diverse clinical decision-mak-
ing processes, such as determining surgical treatment. To 
address the limitations of the image-only model, clinical 
data were integrated into model training, leading to an 
improvement in model performance.

This study has several limitations. First, the plain radio-
graphs and clinical data analyzed were sourced from an 
Asian population who attended a single hospital. There-
fore, future studies involving diverse ethnic groups across 
multiple institutions are needed to improve generaliz-
ability. Second, the data set of 1,139 patients and 2,278 
plain radiographs was considered small. To address this 
issue, image data augmentations were employed. Third, 
the developed ML model can only be applied to adult 
patients with DRFs. Growth plates in pediatric wrist 
radiographs may resemble fracture lines. Therefore, addi-
tional patient data collection and model training to differ-
entiate between growth plates and fractures are required. 

Fourth, the clinical information used for model training 
was limited to certain factors, such as age, gender, and 
BMI. Considering that determining the need for surgi-
cal treatment depends on numerous clinical factors [33], 
including surgeon-related aspects, the clinical signifi-
cance of the developed model should be carefully inter-
preted. Fifth, the data used for ML model training were 
obtained from a single institution, reflecting the specific 
preferences and clinical practices of that institution and 
its surgeons. Accordingly, the model’s accuracy may be 
limited to that specific setting and may not adequately 
represent diverse ethnicities or geographic regions.

Conclusions
The ML model developed in this study may assist in 
assessing the necessity of surgical treatment for patients 
with DRFs. This model can be utilized to enhance the 
success rate of fracture treatment, support decision-mak-
ing, and improve efficiency in the clinical setting. Given 
the high prevalence of DRFs and the increasing num-
ber of affected patients, ongoing efforts are necessary to 
improve the model’s accuracy by increasing the num-
ber of training cases and incorporating up-to-date algo-
rithms. Moreover, external validation of the proposed 
ML model using an independent dataset will be essential 
to evaluate its generalizability and robustness across dif-
ferent clinical settings.

Abbreviations
DRF  Distal radius fracture
ML  Machine learning
AP  Anteroposterior
EMR  Electric medial record
BMI  Body mass index
ICC  Intra-class correlation coefficient
ReLU  Rectified linear unit
Grad-CAM  Gradient-weighted Class Activation Mapping
SHAP  SHapley Additive exPlanations
AUC  Area under the curve
PPV  Positive predictive value
NPV  Negative predictive value

Supplementary Information
The online version contains supplementary material available at  h t t p s :   /  / d o  i .  o r  
g  /  1 0  . 1 1   8 6  / s 1 3  0 1 8 -  0 2 5 - 0  5 8 3 0 - z.

Supplementary Material 1: Figure 1. Detailed architecture of the U-Net 
feature extractor employed in this study. Each box represents the spatial 
resolution and number of channels of the feature map (height × width × 
channels) at each stage of the encoder and decoder. The central bottle-
neck layer compresses the high-level features prior to upsampling, and 
the skip connections between the corresponding encoder and decoder 
blocks are illustrated as horizontal arrows

Supplementary Material 1: Figure 2. Classification accuracy at varying 
thresholds using a masking-based training strategy

Acknowledgements
None declared.

https://doi.org/10.1186/s13018-025-05830-z
https://doi.org/10.1186/s13018-025-05830-z


Page 11 of 12Lim et al. Journal of Orthopaedic Surgery and Research          (2025) 20:419 

Author contributions
Jongmin Lim (JL) and Sehun Chang (SC) contributed equally to this work and 
share co-first authorship. SWH, JL and SC: designed the study. SWH, HJP and 
EK: acquisition of data. All authors: analysis and interpretation of data. SWH, JL 
and SC: prepared and edited manuscript. All authors: read and approved the 
final manuscript.

Funding
This research was supported by the National Research Foundation of Korea 
(NRF) grant funded by the Korea government (MSIT) (No. RS-2022-00165960) 
and the Korea Internet & Security Agency (KISA) grant funded by the Korea 
government (PIPC) (No. RS-2023-00231200). The funders had no role in 
the study design, data collection, analysis, interpretation, and writing the 
manuscript.

Data availability
The datasets analyzed during the current study are not publicly available 
due to institutional policies and ethical considerations involving patient 
confidentiality, but they may be available from the corresponding author 
upon reasonable request and subject to institutional review board approval.

Declarations

Ethical approval and consent to participate
This study protocol was approved by the Institutional Review Board of 
university hospital (IRB No. KBSMC 2023-01-044) and the requirement was 
waived to obtain informed consent.

Competing interests
The authors declare no competing interests.

Received: 4 March 2025 / Accepted: 18 April 2025

References
1. Shapiro LM, Kamal RN, Kamal R, et al. Distal radius fracture clinical practice 

Guidelines–Updates and clinical implications. J Hand Surg. 2021;46(9):807–11.
2. Porrino JA Jr., Maloney E, Scherer K, Mulcahy H, Ha AS, Allan C. Fracture of the 

distal radius: epidemiology and premanagement radiographic characteriza-
tion. AJR Am J Roentgenol. 2014;203(3):551–9.

3. Mauck BM, Swigler CW. Evidence-Based review of distal radius fractures. 
Orthop Clin North Am. 2018;49(2):211–22.

4. Alluri RK, Hill JR, Ghiassi A. Distal radius fractures: approaches, indications, and 
techniques. J Hand Surg Am. 2016;41(8):845–54.

5. Padegimas EM, Osei DA. Evaluation and treatment of osetoporotic 
distal radius fracture in the elderly patient. Curr Rev Musculoskelet Med. 
2013;6(1):41–6.

6. Alzubaidi L, Al-Dulaimi K, Salhi A, et al. Comprehensive review of deep learn-
ing in orthopaedics: applications, challenges, trustworthiness, and fusion. 
Artif Intell Med. 2024;155:102935.

7. Alsoof D, McDonald CL, Kuris EO, Daniels AH. Machine learning for 
the orthopaedic surgeon: uses and limitations. J Bone Joint Surg Am. 
2022;104(17):1586–94.

8. Kalmet PHS, Sanduleanu S, Primakov S, et al. Deep learning in fracture detec-
tion: a narrative review. Acta Orthop. 2020;91(2):215–20.

9. Mutasa S, Varada S, Goel A, Wong TT, Rasiej MJ. Advanced deep learning 
techniques applied to automated femoral neck fracture detection and clas-
sification. J Digit Imaging. 2020;33(5):1209–17.

10. van der Gaast N, Bagave P, Assink N, et al. Deep learning for tibial plateau 
fracture detection and classification. Knee. 2025;54:81–9.

11. Min H, Rabi Y, Wadhawan A, et al. Automatic classification of distal radius 
fracture using a two-stage ensemble deep learning framework. Phys Eng Sci 
Med. 2023;46(2):877–86.

12. McMaster C, Bird A, Liew DFL, et al. Artificial intelligence and deep learning 
for rheumatologists. Arthritis Rheumatol. 2022;74(12):1893–905.

13. Dong Q, Luo G, Lane NE, et al. Deep learning classification of spinal osteo-
porotic compression fractures on radiographs using an adaptation of the 
Genant semiquantitative criteria. Acad Radiol. 2022;29(12):1819–32.

14. Hong N, Cho SW, Shin S, et al. Deep-Learning-Based detection of vertebral 
fracture and osteoporosis using lateral spine X-Ray radiography. J Bone Min 
Res. 2023;38(6):887–95.

15. Krogue JD, Cheng KV, Hwang KM, et al. Automatic hip fracture identifica-
tion and functional subclassification with deep learning. Radiol Artif Intell. 
2020;2(2):e190023.

16. Magneli M, Ling P, Gislen J, et al. Deep learning classification of shoulder 
fractures on plain radiographs of the humerus, scapula and clavicle. PLoS 
ONE. 2023;18(8):e0289808.

17. Chung SW, Han SS, Lee JW, et al. Automated detection and classification 
of the proximal humerus fracture by using deep learning algorithm. Acta 
Orthop. 2018;89(4):468–73.

18. Yoon AP, Lee YL, Kane RL, Kuo CF, Lin C, Chung KC. Development and valida-
tion of a deep learning model using convolutional neural networks to iden-
tify scaphoid fractures in radiographs. JAMA Netw Open. 2021;4(5):e216096.

19. Oude Nijhuis KD, Dankelman LHM, Wiersma JP, et al. AI for detection, clas-
sification and prediction of loss of alignment of distal radius fractures; a 
systematic review. Eur J Trauma Emerg Surg. 2024;50(6):2819–31.

20. Hornung AL, Rudisill SS, Smith S, Streepy JT, Simcock XC. Can machine 
learning identify patients who are appropriate for outpatient open reduction 
and internal fixation of distal radius fractures?? J Hand Surg Glob Online. 
2024;6(6):808–13.

21. Breu R, Avelar C, Bertalan Z, et al. Artificial intelligence in traumatology. Bone 
Joint Res. 2024;13(10):588–95.

22. Holzinger A, Haibe-Kains B, Jurisica I. Why imaging data alone is not enough: 
AI-based integration of imaging, omics, and clinical data. Eur J Nucl Med Mol 
Imaging. 2019;46(13):2722–30.

23. Jo H, Kim C, Gwon D, et al. Combining clinical and imaging data for predict-
ing functional outcomes after acute ischemic stroke: an automated machine 
learning approach. Sci Rep. 2023;13(1):16926.

24. Lin CY, Guo SM, Lien JJ, et al. Combined model integrating deep learning, 
radiomics, and clinical data to classify lung nodules at chest CT. Radiol Med. 
2024;129(1):56–69.

25. Benjamins JW, Yeung MW, Maaniitty T, et al. Improving patient identification 
for advanced cardiac imaging through machine learning-integration of clini-
cal and coronary CT angiography data. Int J Cardiol. 2021;335:130–6.

26. Chlap P, Min H, Vandenberg N, Dowling J, Holloway L, Haworth A. A review of 
medical image data augmentation techniques for deep learning applica-
tions. J Med Imaging Radiat Oncol. 2021;65(5):545–63.

27. Demircioglu A. The effect of feature normalization methods in radiomics. 
Insights Imaging. 2024;15(1):2.

28. Azad R, Aghdam EK, Rauland A, et al. Medical image segmenta-
tion review: the success of U-Net. IEEE Trans Pattern Anal Mach Intell. 
2024;46(12):10076–95.

29. Zhang X, Guo E, Liu X, et al. Enhancing furcation involvement classifica-
tion on panoramic radiographs with vision Transformers. BMC Oral Health. 
2025;25(1):153.

30. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: 
visual explanations from deep networks via Gradient-Based localization. Int J 
Comput Vision. 2020;128(2):336–59.

31. Lundberg SM, Lee S-I. A Unified Approach to Interpreting Model Predictions. 
Paper presented at: Neural Information Processing Systems2017.

32. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation 
coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.

33. Loftus TJ, Tighe PJ, Filiberto AC, et al. Artificial intelligence and surgical 
Decision-making. JAMA Surg. 2020;155(2):148–58.

34. Loftus TJ, Filiberto AC, Li Y, et al. Decision analysis and reinforcement learning 
in surgical decision-making. Surgery. 2020;168(2):253–66.

35. Anttila TT, Karjalainen TV, Makela TO, et al. Detecting distal radius frac-
tures using a Segmentation-Based deep learning model. J Digit Imaging. 
2023;36(2):679–87.

36. Oka K, Shiode R, Yoshii Y, Tanaka H, Iwahashi T, Murase T. Artificial intelligence 
to diagnosis distal radius fracture using biplane plain X-rays. J Orthop Surg 
Res. 2021;16(1):694.

37. Raisuddin AM, Vaattovaara E, Nevalainen M, et al. Critical evaluation of deep 
neural networks for wrist fracture detection. Sci Rep. 2021;11(1):6006.

38. Tobler P, Cyriac J, Kovacs BK, et al. AI-based detection and classification of 
distal radius fractures using low-effort data labeling: evaluation of applicabil-
ity and effect of training set size. Eur Radiol. 2021;31(9):6816–24.

39. Szatmary P, Arora S, Sevdalis N. To operate or not to operate? A multi-
method analysis of decision-making in emergency surgery. Am J Surg. 
2010;200(2):298–304.



Page 12 of 12Lim et al. Journal of Orthopaedic Surgery and Research          (2025) 20:419 

40. Chhabra KR, Sacks GD, Dimick JB. Surgical decision making: challenging 
dogma and incorporating patient preferences. JAMA. 2017;317(4):357–8.

41. Sharma H, Khare GN, Singh S, Ramaswamy AG, Kumaraswamy V, Singh AK. 
Outcomes and complications of fractures of distal radius (AO type B and C): 
volar plating versus nonoperative treatment. J Orthop Sci. 2014;19(4):537–44.

42. Jung HW, Hong H, Jung HJ, et al. Redisplacement of distal radius fracture 
after initial closed reduction: analysis of prognostic factors. Clin Orthop Surg. 
2015;7(3):377–82.

43. Kamal RN, Shapiro LM. American academy of orthopaedic surgeons/
american society for surgery of the hand clinical practice guideline sum-
mary management of distal radius fractures. J Am Acad Orthop Surg. 
2022;30(4):e480–6.

44. Nieves JW, Formica C, Ruffing J, et al. Males have larger skeletal size and 
bone mass than females, despite comparable body size. J Bone Min Res. 
2005;20(3):529–35.

45. Kang SW, Shin WC, Moon NH, Suh KT. Concomitant hip and upper extrem-
ity fracture in elderly patients: prevalence and clinical implications. Injury. 
2019;50(11):2045–8.

46. Hsu S, Bansal N, Denburg M, et al. Risk factors for hip and vertebral fractures 
in chronic kidney disease: the CRIC study. J Bone Min Res. 2024;39(4):433–42.

47. de Melo TG, da Assumpcao LV, Santos Ade O, Zantut-Wittmann DE. Low BMI 
and low TSH value as risk factors related to lower bone mineral density in 
postmenospausal women under Levothyroxine therapy for differentiated 
thyroid carcinoma. Thyroid Res. 2015;8:7.

48. Kanis JA, Johnell O, Oden A, Dawson A, De Laet C, Jonsson B. Ten year 
probabilities of osteoporotic fractures according to BMD and diagnostic 
thresholds. Osteoporos Int. 2001;12(12):989–95.

49. Sander AL, Leiblein M, Sommer K, Marzi I, Schneidmuller D, Frank J. Epide-
miology and treatment of distal radius fractures: current concept based on 
fracture severity and not on age. Eur J Trauma Emerg Surg. 2020;46(3):585–90.

50. Kloberdanz AL, Meyer J, Kammermeier K, et al. Impact of body mass index on 
fracture severity, clinical, radiological and functional outcome in distal radius 
fractures: a retrospective observational study after surgical treatment. Arch 
Orthop Trauma Surg. 2024;144(6):2915–23.

51. Kim SH, Yi SW, Yi JJ, Kim YM, Won YJ. Association between body mass index 
and the risk of hip fracture by sex and age: A prospective cohort study. J 
Bone Min Res. 2018;33(9):1603–11.

52. Cui P, Wang W, Wang Z, et al. The association between body mass index and 
bone mineral density in older adults: a cross-sectional study of community 
population in Beijing. BMC Musculoskelet Disord. 2024;25(1):655.

53. Shin W, Yeom HG, Lee GH, et al. Deep learning based prediction of necessity 
for orthognathic surgery of skeletal malocclusion using cephalogram in 
Korean individuals. BMC Oral Health. 2021;21(1):130.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Machine learning-based prediction of the necessity for the surgical treatment of distal radius fractures
	Abstract
	Introduction
	Materials and methods
	Datasets
	Image labeling
	Data composition and augmentation
	ML architecture and details
	Statistical analysis

	Results
	Discussion
	Conclusions
	References


