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Omeprazole exacerbates intervertebral 
disc degeneration through Caspase‑3 
mediated apoptosis of nucleus pulposus cells: 
a Mendelian randomization, network toxicology, 
and in vitro experimental study
Yuchao Jia1,2†, Haifan Zhao1,2†, Shengbo Huang1,2 and Baoshan Xu1* 

Abstract 

Objective  To investigate the causal correlation and toxicological mechanisms of omeprazole in intervertebral disc degen-
eration (IVDD), alongside a particular emphasis on Caspase-3 (CASP3) mediated apoptosis of nucleus pulposus cells (NPCs).

Methods  Mendelian randomization (MR): GWAS data was employed to assess causal associations between proton 
pump inhibitors (PPIs) and IVDD. Network toxicology: Shared omeprazole-IVDD targets were identified using STRING, 
SwissTargetPrediction, and GeneCards databases. Functional enrichment analysis: Biological pathways were explored 
by employing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Molecular docking: 
Omeprazole-CASP3 binding affinity was assessed by employing AutoDock Vina. Experimental validation: Rat NPCs 
were subjected to CCK-8 assay viability, flow cytometry apoptosis, Western blot, and immunofluorescence.

Results  MR analysis suggested omeprazole substantially augmented IVDD risk (OR = 1.058, 95% CI = 1.004–1.115, 
P = 0.034), with no association observed for esomeprazole or lansoprazole. Network toxicology identified 11 over-
lapping targets, with CASP3 as the hub gene. Molecular docking revealed strong omeprazole-CASP3 binding (free 
energy: − 6.725 kcal/mol) via hydrogen bonds, π—π stacking, and π—S interactions. Enrichment analysis highlighted 
the response to reactive oxygen species, caveolae, endopeptidase activity, and IL-17 signaling pathway as key path-
ways. As revealed by in vitro experiments, omeprazole dose-dependently lessened NPCs viability (300 µM) and height-
ened apoptosis (28.99% apoptosis rate). Western blot showed significant upregulation of Cleaved-CASP3/pro-CASP3 
ratios (P < 0.001), and immunofluorescence demonstrated CASP3 nuclear translocation in omeprazole-treated NPCs.

Conclusions  This study found that taking omeprazole may exacerbate IVDD, and its potential mechanism 
is through CASP3 leading to apoptosis of NPCs. These findings advocate cautious long-term omeprazole use in clini-
cal practice and suggest alternative PPIs.
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Introduction
As a prevalent condition associated with significant pub-
lic health and economic burdens [1], intervertebral disc 
degeneration (IVDD) compromises spinal flexibility and 
shock absorption through structural deterioration of 
the intervertebral disc. Even though frequently asymp-
tomatic in early stages, progressive IVDD potentially 
brings about chronic pain and spinal dysfunction [2]. In 
particular, the pathogenesis involves Caspase-3 (CASP3) 
mediated apoptosis of nucleus pulposus cells (NPCs) 
and dysregulated extracellular matrix (ECM) degrada-
tion [2, 3]. As the terminal executor of apoptosis, CASP3 
activation has proven to be crucial in driving IVDD pro-
gression [4]. As evidently demonstrated by mechanistic 
studies, multiple stimuli, comprising TNF-α [5], IL-1β 
[6], and oxidative stress [7], converge to activate CASP3 
signaling. This activation cascade facilitates NPC apopto-
sis and hinders ECM metabolism, ultimately exacerbat-
ing disc degeneration.

Despite significant advancements in surgical and 
pharmacological management, contemporary therapeu-
tic strategies focus on symptom alleviation rather than 
arresting disease progression [8]. This unmet clinical 
need underscores the urgent necessity for identifying 
modifiable risk factors, particularly those attributable to 
iatrogenic sources like commonly prescribed pharma-
ceuticals. Omeprazole, a proton pump inhibitor (PPI), 
is extensively employed in managing gastric acid-related 
disorders. Emerging findings have prompted concerns 
over its musculoskeletal effects [9]. Recent epidemiologi-
cal studies suggest that prolonged omeprazole use may 
heighten the risk of osteoporotic fractures and osteoar-
thritis, potentially via mechanisms including impaired 
calcium absorption due to gastric acid suppression, mag-
nesium malabsorption, and vitamin B12 deficiency [9, 
10]. In particular, mechanistic studies have demonstrated 
omeprazole’s capacity to activate CASP3, encompass-
ing apoptosis in renal tubular cells [11]. Nevertheless, it 
remains controversial about the potential influence of 
omeprazole on IVDD pathogenesis, among which three 
major limitations have confused the general public: (1) 
Inherent confounding bias in observational designs pre-
venting causal inference; (2) Potential cell-type specific-
ity of apoptotic mechanisms in NPCs residing within 
hypoxic, nutrient-deficient microenvironments [2]; (3) 
Insufficient integration of bioinformatics predictions 
with experimental validation.

As an advanced epidemiological approach, Mendelian 
randomization (MR) has garnered significant attention 
for its capacity to infer causal correlations from obser-
vational data. By leveraging genetic variants, particularly 
single nucleotide polymorphisms (SNPs), as instrumen-
tal variables, MR enables robust causality assessment 

between exposures and outcomes [12]. Renowned as an 
emerging discipline rooted in network biology and net-
work pharmacology, network toxicology systematically 
characterizes and predicts drug toxicity by meticulously 
constructing integrative network models [13]. Grounded 
in preliminary evidence linking apoptosis to IVDD, this 
study puts forth a hypothesis that omeprazole exacer-
bates IVDD via CASP3-dependent apoptotic pathways. 
To validate this hypothesis, we implemented a tripartite 
strategy integrating: (1) MR analysis to establish genetic 
causality between omeprazole exposure and IVDD risk; 
(2) Network toxicology screening to identify shared 
omeprazole-IVDD targets and construct a"drug-target-
disease"interaction network; (3) Molecular docking 
coupled with in vitro NPCs models to elucidate CASP3-
mediated apoptotic mechanisms. These findings are 
anticipated to lay a solid theoretical foundation for opti-
mizing PPI administration in IVDD patients.

Method
Mendelian randomization analysis of PPI and IVDD
The STROBE-MR framework was applied as the method-
ological foundation. From a theoretical standpoint, MR 
principally hinges on three core assumptions: (1) Instru-
mental variables demonstrate a conspicuous association 
with the exposure of interest; (2) Instrumental variables 
independent of confounders influence both exposure and 
outcome; (3) Instrumental variables do not directly affect 
the outcomes [14].

The GWAS summary data for PPI and IVDD are sourced 
from the IEU Open GWAS project (https://​gwas.​mrcieu.​
ac.​uk/​datas​ets/). Table 1 presents specific data. The process 
of filtering instrumental variables involved: (1) selecting 
SNPs with a significance level of 5 × 10–6, (2) eliminat-
ing SNPs in linkage disequilibrium with an r2 threshold of 
< 0.001 within 10,000 kb, (3) excluding palindromic SNPs 
through harmonization, and (4) using the LDtrait tool to 
exclude SNPs linked to confounders [12, 15].

Two-sample MRs were employed to gauge the influ-
ence of PPI on IVDD. Supplemented by MR Egger, 
weighted median, simple mode, and weighted mode 
analyses for robustness, our methodology princi-
pally employed the Inverse Variance Weighted (IVW) 
method to ensure accurate causal estimates. Additionally, 

Table 1  Detailed information on the GWAS summary data

Phenotype Consortium Population Case Control GWAS ID

omeprazole MRC-IEU European 27,277 435,656 ukb-b-14960

esomepra-
zole

MRC-IEU European 1,546 461,387 ukb-b-17371

lansoprazole MRC-IEU European 16,448 446,485 ukb-b-19156

IVDD NA European 4,690 356,504 ukb-d-M51

https://gwas.mrcieu.ac.uk/datasets/
https://gwas.mrcieu.ac.uk/datasets/
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sensitivity analysis was conducted accordingly, which pri-
marily encompassed Cochrane’s Q-test and MR Egger 
intercept test to examine heterogeneity and horizontal 
pleiotropy in MR results, and the MR-PRESSO test was 
used to identify and exclude outliers [12].

Omeprazole and IVDD gene target acquisition
The chemical structure of omeprazole was retrieved from 
the PubChem database (https://​pubch​em.​ncbi.​nlm.​nih.​
gov/) [16] and subjected to target gene identification 
through computational analysis. Structural data were 
imported into the STRING database (https://​cn.​string-​
db.​org/) [17] and SwissTargetPrediction (http://​www.​
swiss​targe​tpred​iction.​ch) [18] for systematic pharmaco-
logical target prediction. In parallel, the GeneCards data-
base (https://​www.​genec​ards.​org) was interrogated using 
the search term"intervertebral disc degeneration,"with 
genes scoring above 10 selected as high-confidence can-
didates for IVDD-associated targets.

Construction of protein interaction networks 
and identification of Hub gene
Common target genes between omeprazole and IVDD 
were determined via Venn diagram analysis. Subsequent 
protein–protein interaction (PPI) network construc-
tion was constructed by utilizing the STRING data-
base (https://​cn.​string-​db.​org/) with Homo sapiens as 
the reference organism, employing a stringent interac-
tion confidence threshold (> 0.4) to ensure high-quality 
interactions. The resultant PPI data were imported into 
Cytoscape v3.7.0 for network visualization, topologi-
cal metric calculation, and identification of hub genes 
through node centrality analysis [19].

GO and KEGG enrichment analysis
Functional and pathway enrichment analyses were 
methodically executed on 11 candidate genes implicated 
in omeprazole-induced IVDD. Gene Ontology (GO) 
analysis characterized biological processes (BP), cel-
lular components (CC), and molecular functions (MF) 
to delineate their mechanistic roles in IVDD pathogen-
esis. Complementary Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis identi-
fied key signaling cascades associated with omeprazole-
mediated IVDD [20].

Molecular docking of hub genes and omeprazole
The protein structure of CASP3 (PDB ID: 1 NMS) origi-
nated from the RCSB Protein Data Bank (https://​www.​
rcsb.​org) and was fabricated by utilizing MGLtools 
1.4.2 [21]. The preparation process encompassed adding 

hydrogen atoms, eliminating crystallographic water 
molecules, and assigning Gasteiger partial charges 
through the prepare_receptor4 script. The binding site 
was defined as the centroid of the co-crystallized ligand 
within the original PDB structure.

The three-dimensional structure of omeprazole (CAS: 
73,590–58-6) was retrieved from the PubChem database 
(https://​pubch​em.​ncbi.​nlm.​nih.​gov) and processed by uti-
lizing the prepare_ligand4 script in MGLtools 1.4.2, which 
included structural optimization and Gasteiger charge 
assignment. Molecular docking simulations were per-
formed by adopting AutoDock Vina v1.2.5 [22] with the 
following parameters: twenty ligand conformations were 
generated through systematic search algorithms, and the 
optimal pose was selected based on the lowest calculated 
binding free energy for subsequent interaction analysis.

Cell acquisition and culture
NPCs were procured from 6-week-old male Sprague–
Dawley rats following humane euthanasia. Under asep-
tic conditions, the caudal vertebrae were dissected to 
reveal the intervertebral discs. The annulus fibrosus 
was incised circumferentially, and NP tissue was metic-
ulously separated. Tissue digestion was performed 
using 5% type II collagenase (Solarbio, CAS: 9001–12-
1) in a 37 °C shaking incubator for 4  h to materialize 
single-cell suspension.

Following enzymatic digestion, isolated NPCs were 
seeded in an F12 medium containing 10% fetal bovine 
serum (FBS) and maintained in a incubator (37 °C, 5% 
CO2). Cellular proliferation was periodically monitored 
via microscopy until the cells reached 80% confluence 
while maintaining morphological integrity. Subcultur-
ing was performed at this point. Cells from passages 3–4 
were selected for subsequent experimental procedures.

CCK‑8 assay for NPC viability
NPCs were seeded in 96-well plates at 5 × 103 cells/
well and pre-cultured for 24 h (37 °C, 5% CO2) to facili-
tate adhesion. Upon adhesion stabilization, cells were 
subjected to omeprazole (100–400 μM) for 24-, 48-, and 
72-h durations. After the above treatments, 10% CCK-8 
reagent (GLPBIO, GK10001) was introduced to each well 
and incubated for 2 h. Optical density (OD) at 450 nm was 
quantified by adopting a multimode microplate reade. Cell 
viability was then calculated based on these readings.

Flow cytometry apoptosis
Based on CCK-8 results, an optimal omeprazole con-
centration was selected for subsequent apoptosis assays. 

https://pubchem.ncbi.nlm.nih.gov/)
https://pubchem.ncbi.nlm.nih.gov/)
https://cn.string-db.org/)
https://cn.string-db.org/)
http://www.swisstargetprediction.ch
http://www.swisstargetprediction.ch
https://www.genecards.org
https://cn.string-db.org/
https://www.rcsb.org
https://www.rcsb.org
https://pubchem.ncbi.nlm.nih.gov
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Cells were harvested by centrifugation (300 × g, 5  min) 
and washed with PBS. After washing, cells were resus-
pended in 500 μL of 1 × Annexin V binding buffer. Stain-
ing was initiated by sequentially adding 5 μL Annexin 
V-FITC Reagent and 5 μL PI Reagent with gentle vortex 
mixing, accompanied by dark incubation. Flow cyto-
metric analysis was immediately employed to quantify 
apoptotic populations: Annexin V+/PI− (early apoptotic), 
Annexin V+/PI+ (late apoptotic), and Annexin V−/PI+ 
(Necrotic cells) subpopulations.

Western blot
NPCs were assigned to two experimental groups: an 
untreated control group and an omeprazole-treated 
group, with the latter’s optimal drug concentration pre-
determined through CCK-8 cytotoxicity assays. After 
a 24-h intervention, cells were lysed with RIPA buffer 
for protein extraction. Afterward, protein lysates were 
resolved on 12% SDS-PAGE gels and transferred to 
PVDF membranes. After blocking with 5% non-fat milk, 
the membrane was incubated overnight at 4  °C with 
the following primary antibodies: anti-CASP3 (1:1000, 
A19664, ABclonal) and β-actin (1:2000, BSM-33036 M, 
Bioss). Subsequently, the membrane was washed thrice 
with TBST and incubated with HRP-conjugated second-
ary antibodies (1:5000) at room temperature for 1 h. Fol-
lowing three additional TBST washes, chemiluminescent 
signals were detected using a gel imaging system. Band 
intensities were quantified via ImageJ grayscale densi-
tometry and normalized to β-actin expression.

Immunofluorescence
NPCs were allocated into control and omeprazole-
treated groups (concentration optimized via CCK-8 
results). Following PBS washing, fixation was performed 
using 4% paraformaldehyde (PFA) for 15 min at room 
temperature. Subsequently, permeabilization with 0.1% 
Triton X-100 proceeded for 15 min, followed by block-
ing with 3% bovine serum albumin (BSA) for 1  h. Pri-
mary anti-CASP3 antibody (1:200, A11319, ABclonal) 
was applied overnight at 4 °C. After washing, Alexa Fluor 
488-conjugated secondary antibody (1:500) incubation 
occurred for 50 min at room temperature. Nuclear coun-
terstaining was performed with DAPI staining solution 
by incubating in the dark at room temperature for 10 
min. After washing with PBS (PH7.4), fluorescence imag-
ing was conducted using an inverted fluorescence micro-
scope with DAPI and FITC channels.

Statistical analysis
Statistical analyses were performed using GraphPad 
Prism. Western blot quantification data are presented 

as mean ± SD, and an unpaired Student’s t-test assessed 
comparisons between groups. Statistical significance 
was p < 0.05, with asterisks indicating significance lev-
els. Detailed statistical parameters and figure legends are 
provided in the Results section.

Result
Causal effects of PPI on IVDD
IVW analysis illustrated that omeprazole exposure was 
tightly correlated with substantially augmented IVDD 
risk (GWAS ID: ukb-dM5, OR = 1.058, 95%CI = 1.004–
1.115, P = 0.034), whereas esomeprazole and lansoprazole 
exhibited no significant associations (Fig. 1, Supplemen-
tary Table S1). Sensitivity analyses revealed no detectable 
heterogeneity or horizontal pleiotropy, confirming the 
result’s robustness (Supplementary Table S2).

Target genes of omeprazole and IVDD
The chemical structure of omeprazole (SMILES: CC1 
= CN = C(C(= C1OC)C)CS(= O)C2 = NC3 = C(N2)
C = C(C = C3)OC) was retrieved from PubChem for 
target prediction. Using the STRING database, the 
structural analysis identified 10 putative omeprazole-
associated genes (Fig.  2A), and SwissTargetPrediction 
further expanded the candidate pool with an additional 
100 genes (Supplementary Table  S3). Merging these 
datasets yielded 110 targets. Concurrently, GeneCards 
screening for"intervertebral disc degeneration"(score 
> 10) generated 317 IVDD-related genes (Supplementary 
Table  S4), establishing the foundation for subsequent 
network analysis.

Drug‑target‑disease network construction
Venn diagram analysis was employed to identify shared 
toxicology targets between omeprazole and IVDD, 
revealing 11 intersecting genes: MMP1, SIRT1, CSF1R, 
LRRK2, MAPK1, PIK3 CA, MMP9, CASP3, MMP13, 
HMOX1, and CASP9 (Fig. 2B). These overlapping targets 
were incorporated into a network toxicology framework 
by constructing a"drug-target-disease"interaction net-
work with Cytoscape. The network revealed omeprazole’s 
potential mechanisms in IVDD pathogenesis (Fig. 2C).

Functional enrichment analysis
To explore the molecular mechanisms underlying the 
pathological effects of omeprazole on IVDD, GO and 
KEGG enrichment analyses were conducted based on 
its potential targets. As shown in Fig.  2D, the top 10 
significantly enriched terms across BP, CC, and MF are 
summarized. The BP analysis highlighted a predomi-
nant enrichment in the response to reactive oxygen 
species. The CC analysis revealed a strong association 
with caveolae. Furthermore, the MF analysis identified 
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Fig. 1  Forest plot shows the effects of three PPIs on IVDD. OR, odds ratio; CI, confidence interval

Fig. 2  Integrative network analysis of omeprazole-IVDD interactions: A STRING-based protein interaction network of omeprazole targets; B Venn 
diagram illustrating target gene overlap between omeprazole and IVDD; C Drug-target-disease interaction network mapping omeprazole-IVDD 
pathological associations; D Top 10 enriched Gene Ontology terms (BP: biological processes; CC: cellular components; MF: molecular functions) 
for shared targets; E KEGG pathway enrichment analysis of intersecting genes; F Protein–protein interaction (PPI) network highlighting hub genes 
in omeprazole-induced IVDD
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critical functional activities, notably endopeptidase 
activity. For pathway-specific exploration, KEGG 
analysis identified 10 significantly enriched signaling 
pathways, among which the IL-17 signaling pathway 
showed the strongest relevance to IVDD pathogenesis 
(Fig. 2E, Supplementary Table S5-8).

Protein–protein interaction network construction and hub 
gene identification
Using the STRING database with the human genome 
as the reference, 11 overlapping genes were analyzed 
to construct a PPI network. The resulting network was 
subsequently imported into Cytoscape for hub gene 
identification. Rooted in node degree analysis, CASP3 
demonstrated the most striking connectivity. Under 
such circumstances, it was identified as the hub gene 
mediating omeprazole’s effects on IVDD (Fig. 2F).

Molecular docking
The analysis of the top-ranked conformation revealed 
that the small molecule forms hydrogen bond inter-
actions with ARG-207 (bond distances: 1.8/2.6 Å) 
and TRP-214 (bond distance: 2.6 Å). Additionally, it 
engages in a π-π stacking interaction with TRP-206 
and exhibits a π-S interaction with PHE-356. This 
binding pattern, combined with a calculated bind-
ing free energy of −6.725 kcal/mol, indicates a strong 
binding affinity (Fig. 3).

Omeprazole targets CASP3 to promote apoptosis of NPCs
The CCK-8 assay demonstrated that omeprazole dimin-
ished NPCs viability in a dose- and time-dependent 
manner, with striking suppression of cell proliferation 
observed at 300 μM across 24-, 48-, and 72-h treatment 
groups (Fig. 4A). Annexin V-FITC/PI staining combined 

with flow cytometry revealed a 28.99% apoptosis rate 
(23.00% early and 5.99% late apoptosis) in cells treated 
with 300 μM omeprazole for 24 h (Fig.  4B). As evi-
denced by Western blot analysis, the Cleaved-CASP3/
pro-CASP3 protein ratio was significantly increased in 
the omeprazole-treated group compared to the control 
group (Fig.  4D-E). Immunofluorescence results sug-
gested cytoplasmic localization of CASP3 in cells cul-
tured in the control group, whereas omeprazole-treated 
cells exhibited nuclear and cytoplasmic shrinkage with 
partial nuclear translocation of CASP3 (Fig. 4C). CASP3, 
initially as pro-CASP3 in the cytoplasm, undergoes pro-
teolytic cleavage into Cleaved-CASP3 during apoptosis, 
followed by nuclear translocation [23]. Collectively, find-
ings summarized from CCK-8, flow cytometry, Western 
blot, and immunofluorescence analyses substantiate that 
omeprazole triggers NPCs apoptosis through CASP3 
activation.

Discussion
For patients suffering from IVDD or chronic lower 
back pain, oral nonsteroidal anti-inflammatory drugs 
(NSAIDs) are routinely administered to alleviate dis-
comfort in clinical practice [24]. Nonetheless, gastroin-
testinal disturbances frequently manifest as a common 
adverse effect. On that account, it is advocated to take 
PPIs orally simultaneously to protect the gastric mucosa. 
In particular, the most frequently employed one is ome-
prazole, which is also considered safe [25]. Nevertheless, 
emerging evidence has underscored that long-term use 
may augment the risk of osteoarthritis [10], a disease that 
shares pivotal pathophysiological pathways with IVDD, 
such as inflammation and extracellular matrix dysregu-
lation [26]. As these overlapping mechanisms suggest, 
omeprazole may exacerbate the progression of IVDD, 
a hypothesis supported by our MR analysis. On top of 
that, we noticed that other PPIs, such as esomeprazole 

Fig. 3  In the molecular docking diagram of CASP3 and omeprazole, the cartoon represents a protein, cyan sticks represent small molecules, blue 
dashed lines represent hydrogen bonding interactions, and cyan dashed lines represent π—π interactions



Page 7 of 11Jia et al. Journal of Orthopaedic Surgery and Research          (2025) 20:443 	

and lansoprazole, were not remarkably associated with 
IVDD risk, which evidently demonstrates that prioritiz-
ing their use as a substitute for omeprazole may reduce 
the potential risk of IVDD. Aside from that, for individu-
als continually enduring IVDD or lower back pain who 
require long-term use of NSAIDs, using drugs such as 
misoprostol, COX-2 selective inhibitors, and H (2) block-
ers instead of omeprazole to protect the gastric mucosa 
may serve as a satisfactory option [27].

As a proton pump inhibitor, omeprazole disrupts intes-
tinal TRPM6/7 channel-mediated magnesium absorp-
tion, giving rise to hypomagnesemia in chronic users [28]. 
Magnesium holds indisputable significance for interver-
tebral disc cell function, safeguarding NPCs against ROS, 
inflammation, and aging to delay IVDD [29]. Magnesium 
deficiency impedes DNA replication, worsening inflam-
mation and oxidative stress in NPCs, thereby expediting 
degeneration [30, 31]. Omeprazole-induced vitamin B12 
malabsorption elevates homocysteine levels, negatively 
influencing collagen metabolism [32–34]. Abnormal col-
lagen metabolism directly imposes a disadvantageous 
impact on the mechanical stability of the annulus fibro-
sus [35]. On top of that, gastric acid suppression alters 
gut microbiota, fostering systemic translocation of gram-
negative bacterial lipopolysaccharides (LPS) [36, 37]. LPS 
activates Toll-like receptors, upregulates pro-inflamma-
tory factors in discs, and activates matrix metalloprotein-
ases (MMPs) to degrade the extracellular matrix [38].

We identified 11 genes that exhibited overlap between 
omeprazole and IVDD, comprising MMP1, SIRT1, 
CSF1R, LRRK2, MAPK1, PIK3 CA, MMP9, CASP3, 
MMP13, HMOX1, and CASP9. Subsequent BP analysis 
of these genes revealed predominant enrichment in ROS 
response pathways. Heightened ROS levels and less-
ened antioxidant enzyme activity in degenerative discs 
induce oxidative stress, which in turn accelerates disc 
degeneration by promoting cellular senescence, apop-
tosis, and ECM degradation [39]. Chronic omeprazole 
use exacerbates oxidative stress [40], which sufficiently 
demonstrates its enormous potential to aggravate disc 
cell dysfunction. CC analysis underscored caveolae—
plasma membrane invaginations known to mediate sig-
nal transduction, endocytosis, and mechanotransduction 
[41]. Furthermore, caveolae regulate inflammatory and 
oxidative stress pathways, and their dysfunction may 
disrupt intervertebral disc cell mechanosensitivity and 
homeostasis, thereby accelerating extracellular matrix 
degradation and apoptosis [42]. MF analysis implicated 
endopeptidase activity in disc degeneration. ECM degra-
dation, a hallmark of IVDD, is driven by MMPs, a fam-
ily of endopeptidases mediating ECM remodeling [43]. 
Therefore, omeprazole may contribute to IVDD through 
MMP-mediated ECM disruption. KEGG analysis 
unveiled a pronounced enrichment of overlapping genes 
in the IL-17 signaling pathway. As a 35 kDa pro-inflam-
matory cytokine, IL-17 binds to IL-17RA/C receptor 

Fig. 4  Omeprazole induces apoptosis in NPCs through CASP3 activation. A CCK-8 assay; B Immunofluorescence staining of CASP3; (D, E) Western 
blot analysis of Cleaved-CASP3/pro-CASP3 protein expression
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heterodimers to activate NF-κB, MAPK/AP-1, and C/
EBP pathways while synergistically amplifying inflam-
matory gene expression via the NOTCH pathway [44]. 
In IVDD, heightened IL-17 levels correlate with degen-
eration severity and drive pathology through: (1) ECM 
degradation via MMP-3, MMP-13, and ADAMTS-7 
upregulation; (2) inflammatory cascade amplification 
(TNF-α, IL-1β, PGE2, NO); (3) JAK/STAT/VEGF over-
expression and pathological angiogenesis; (4) PI3 K/Akt/
Bcl-2-dependent autophagy suppression; (5) concentra-
tion-dependent inhibition of NPCs proliferation. These 
mechanisms hold back disc homeostasis and speed up 
degeneration [44].

Afterward, the PPI network identified CASP3 as a piv-
otal gene for omeprazole-mediated IVDD. The molecu-
lar docking findings demonstrated that omeprazole 
forms hydrogen bonds, π—π stacking, and π—S inter-
actions with crucial residues of CASP3, and the bind-
ing free energy (−6.725  kcal/mol) further confirms its 
strong binding affinity. CASP3 plays a paramount role 
in apoptosis, which can be initiated by extrinsic stimuli 
(e.g., steroid hormones and TNF receptor ligands) [45] or 
intrinsic cellular stressors (e.g., viral infection, hypoxia, 
oxidative stress) [46]. The extrinsic pathway is activated 
through ligand binding to death receptors, eventually 
leading to caspase-8 activation and subsequent trigger-
ing of downstream effector caspases [45]. In contrast, 
the intrinsic pathway involves increased mitochondrial 
outer membrane permeabilization, releasing cytochrome 
c. Cytochrome c forms apoptosomes that activate effec-
tor caspases, comprising CASP3 [46]. In general, CASP3 
exists as an inactive pro-CASP3 zymogen. Upon apop-
totic induction, CASP3 undergoes proteolytic cleav-
age to form an active heterotetramer composed of p17 
and p12 subunits. Activated CASP3 translocates to the 
nucleus, directly targeting nuclear proteins and induc-
ing morphological changes such as chromatin conden-
sation and DNA fragmentation [47, 48]. As illustrated 
by our experimental findings, 300 μM omeprazole treat-
ment strikingly inhibited NPCs proliferation and brought 
about early apoptosis within 24 h. Evidenced by an ele-
vated Cleaved-CASP3/pro-CASP3 ratio, Western blot 
analysis suggested noticeable CASP3 activation, which 
aligned with canonical caspase cascade dynamics during 
apoptosis. Immunofluorescence further demonstrated 
cytoplasmic CASP3 localization in cells cultured in the 
control group, whereas omeprazole-treated cells exhib-
ited cytoplasmic shrinkage and partial nuclear transloca-
tion of CASP3. These subcellular redistribution patterns 
suggest active CASP3 enters the nucleus via membrane 
permeation or transport mechanisms to cleave nuclear 
substrates and initiate apoptosis. The aforementioned 
experimental observations confirm that omeprazole 

induces NPCs death through CASP3-dependent apopto-
sis. CASP3 plays a paramount role in IVDD. Inflamma-
tory factors and mechanical stress activate CASP3, which 
not only lessens cell counts, holds back ECM homeo-
stasis through upregulating MMPs and ADAMTS but 
also amplifies inflammation via cytokine release (IL-1β, 
TNF-α), thereby exacerbating IVDD [49–52]. Therapeu-
tic strategies targeting CASP3, such as liraglutide (via the 
PI3 K/Akt signaling pathway) [53] and miR-155 (inhibit-
ing FADD/CASP3) [54], have demonstrated impressive 
potential in mitigating apoptosis. Moreover, the connec-
tion between CASP3 and NLRP3 inflammasome activa-
tion and HIF-1α-mediated autophagy underscores its 
broader regulatory role in IVDD progression [50, 55].

In previous studies, omeprazole mediated multiple 
modes of cell death. In renal cells, omeprazole induces 
oxidative stress-driven necrotic death characterized by 
Annexin V/7-AAD positivity, LDH release, cytoplasmic 
vacuolization, and irregular chromatin condensation. 
This process is mediated by mitochondrial ROS accu-
mulation and lipid peroxidation, which alter membrane 
permeability and disrupt energy metabolism, operating 
independently of apoptosis, necroptosis, ferroptosis, or 
autophagy pathways [11]. In human neutrophils, acidi-
fied omeprazole triggers CASP3-dependent apoptosis 
in a time- and dose-dependent manner, as evidenced 
by DEVD-CHO-mediated suppression of apopto-
sis [56]. These findings align with our observations in 
NPCs. Beyond apoptosis and necrosis, omeprazole may 
modulate additional cellular pathways. PPIs can induce 
cellular autophagy. After treatment with esomeprazole, 
the levels of autophagy markers LC3-II and p62 in EAC 
cells conspicuously heightened. The augment of LC3-II 
is universally acknowledged as a marker of autophagy 
activation, while the accumulation of p62 may indicate 
obstruction of autophagic flux [57]. More importantly, 
omeprazole can also heighten intracellular copper ion 
concentration and oxidative stress by inhibiting the 
copper transporter ATP7 A. The above effect can pre-
vent the efflux of copper ions and give rise to cupro-
tosis and ferroptosis [58]. In NPCs, our study confirms 
omeprazole-induced apoptosis; however, the potential 
involvement of other death modalities (e.g., autophagy, 
cuprotosis, necroptosis) remains unresolved. Future 
studies are imperative to clarify these mechanisms.

Notwithstanding the contributions above, this study is 
imperfect in several facets. First and foremost, MR find-
ings are restricted to European populations, limiting 
generalizability to other ethnic groups. Future academic 
and practical endeavors are warranted to conduct inde-
pendent cohort or case–control studies in non-European 
populations to validate the association between omepra-
zole and IVDD. In addition, the stringent genome-wide 
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significance threshold (P < 5 × 10–8) lessened the number 
of eligible SNPs, necessitating reliance on a less rigor-
ous threshold (P < 5 × 10–6), which may render the result 
reliability less satisfactory. Further validation is insuffi-
cient throughout in vitro and in vivo experiments. In this 
regard, future studies should validate omeprazole’s role 
in disc degeneration, particularly its effects on apoptotic 
regulators (e.g., Bcl-2, Bax) beyond CASP3.

Conclusion
This study establishes that omeprazole accelerates IVDD 
progression via CASP3-mediated apoptosis of NPCs. 
These findings advocate cautious long-term omeprazole 
use in clinical practice and suggest alternative PPIs.
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