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Abstract
Background  The aim of this study was to compare the performance of artificial intelligence (AI) in detecting distal 
radius fractures (DRFs) on plain radiographs with the performance of human raters.

Methods  We retrospectively analysed all wrist radiographs taken in our hospital since the introduction of AI-guided 
fracture detection from 11 September 2023 to 10 September 2024. The ground truth was defined by the radiological 
report of a board-certified radiologist based solely on conventional radiographs. The following parameters were 
calculated: True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN), accuracy (%), Cohen’s 
Kappa coefficient, F1 score, sensitivity (%), specificity (%), Youden Index (J Statistic).

Results  In total 1145 plain radiographs of the wrist were taken between 11 September 2023 and 10 September 
2024. The mean age of the included patients was 46.6 years (± 27.3), ranging from 2 to 99 years and 59.0% were 
female. According to the ground truth, of the 556 anteroposterior (AP) radiographs, 225 cases (40.5%) had a DRF, 
and of the 589 lateral view radiographs, 240 cases (40.7%) had a DRF. The AI system showed the following results on 
AP radiographs: accuracy (%): 95.90; Cohen’s Kappa: 0.913; F1 score: 0.947; sensitivity (%): 92.02; specificity (%): 98.45; 
Youden Index: 90.47. The orthopedic surgeon achieved a sensitivity of 91.5%, specificity of 97.8%, an overall accuracy 
of 95.1%, F1 score of 0.943, and Cohen’s kappa of 0.901. These results were comparable to those of the AI model.

Conclusion  AI-guided detection of DRF demonstrated diagnostic performance nearly identical to that of an 
experienced orthopedic surgeon across all key metrics. The marginal differences observed in sensitivity and specificity 
suggest that AI can reliably support clinical fracture assessment based solely on conventional radiographs.
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Introduction
Artificial intelligence (AI) is increasingly used for fracture 
detection in radiographs, enhancing diagnostic accuracy 
and efficiency. Studies show AI can perform at a radiolo-
gist’s level, aiding fracture detection across various ana-
tomical regions [1, 2]. Machine learning models analyze 
large datasets, identifying subtle fractures that might not 
be detetected in human evaluation. While AI reduces 
workload and speeds up diagnosis, challenges remain, 
such as reliance on high-quality training data and the 
risk of misinterpretation. Despite these limitations, AI 
is becoming a valuable tool in radiology, supporting cli-
nicians in making faster, more reliable decisions—espe-
cially in emergency settings.

Distal radius fractures (DRFs) are among the most 
common fractures in emergency and orthopedic care. 
Accurate and timely diagnosis is crucial, as missed or 
misdiagnosed fractures can lead to complications like 
malunion, chronic pain, and reduced wrist function. AI, 
particularly deep learning and convolutional neural net-
works (CNNs), has shown promise in detecting DRFs 
on radiographs, with numerous studies evaluating dif-
ferent models, their effectiveness, and limitations. Con-
volutional neural networks (CNNs) are a type of deep 
learning model designed to analyze images by recogniz-
ing visual patterns—such as lines, edges, or shapes—that 
help identify abnormalities like fractures. These mod-
els are trained on large datasets of labeled images and 
improve through repeated exposure to variations in anat-
omy and pathology.

Oude Nijhuis et al. [3] developed an open-source CNN 
for DRF detection, achieving high accuracy (87% inter-
nal, 82% external) with an area under the curve (AUC) of 
0.93 and 0.88. However, the model’s segmentation perfor-
mance remained moderate, limiting precise localization 
of the fracture. Anttila et al. [4] trained a segmentation-
based deep learning model on 3,785 radiographs, reach-
ing an AUC of 0.97 and 0.95. While effective, the lack of 
external validation limits generalizability. Kim et al. [5] 
compared DenseNet-161 and ResNet-152 (AUC: 0.96 
and 0.95) and used activation mapping for interpret-
ability, but external validation was lacking. Oka et al. [6] 
employed bi-plane radiographs, achieving an AUC of 
0.99 on a small dataset—an approach with potential but 
requiring larger-scale validation. Gan et al. [7] found AI 
outperformed radiologists and matched orthopedists 
(AUC: 0.96) but only analyzed AP radiographs, reducing 
real-world applicability. Suzuki et al. [8] demonstrated 
near-perfect AI accuracy (99.3%), surpassing special-
ists, raising concerns about overfitting or dataset limita-
tions. Lee et al. [9] showed AI-guided diagnosis improved 
novice radiologists’ accuracy, particularly for scaph-
oid fractures, reinforcing AI’s role as a diagnostic aid. 
Previous studies often lacked external validation, used 

small or homogeneous datasets, or focused only on AP 
radiographs. Unlike many of the previous studies, our 
investigation is based on a large and diverse real-world 
dataset, including both AP and lateral view radiographs. 
Moreover, it directly compares AI performance to that 
of a human expert in musculoskeletal trauma care, using 
consistent evaluation metrics and blinded assessment—
something few prior studies have done.Ongoing research 
on AI-guided DRF detection is crucial due to the diver-
sity of AI architectures and training methods. Different 
models (e.g., CNNs, EfficientNet, DenseNet) perform 
variably across datasets, complicating direct compari-
sons. Since no universal AI model exists, further studies 
are needed to determine which algorithms generalize 
best across diverse clinical settings. Additionally, external 
validation remains limited, restricting real-world applica-
bility. Future research should also explore AI integration 
into clinical workflows, optimizing human-AI collabo-
ration to improve diagnostic accuracy while addressing 
potential biases and overfitting risks.

This study aimed to compare the performance of AI in 
detecting DRFs on wrist radiographs with that of human 
raters.

Methods
Study sample
The study was approved by the instutional ethics com-
mittee (231072024-BO-E-RETRO), which also waived 
the requirement for patient informed consent. This ret-
rospective single-center analysis was performed on all 
wrist radiographs taken between 11 September 2023 and 
10 September 2024, following the implementation of AI-
guided fracture detection. The inclusion criteria were: 
(i) patients from all age groups, (ii) radiographs taken in 
one or two planes of the human wrist, (iii) images with 
adequate quality and field of view. All straight anteropos-
terior (AP) and lateral view radiographs were identified 
from the hospital’s radiographic demonstration program 
using predefined search parameters based on the body 
region and examination date.

Orthopaedic rater evaluation and blinding
All radiographs were reviewed by an experienced ortho-
pedic surgeon (PJ) with over 10 years of clinical and sur-
gical experience in musculoskeletal trauma. The rater was 
blinded to the study design, patient demographics, and 
results from both the AI system and the radiologist. Frac-
ture detection findings were recorded in a spreadsheet, 
alongside the outputs of the AI model and the radiologi-
cal reports. The diagnostic performance of the ortho-
pedic surgeon was evaluated using the same statistical 
parameters as for the AI: sensitivity, specificity, accuracy, 
F1 score, and Cohen’s kappa. This enabled a direct, quan-
titative comparison between human and AI performance.
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BoneView™ version 2.5.1
Since 11 September 2023, the BoneView™ AI system (ver-
sion 2.5.1, Gleamer, Paris, France) has been implemented 
in the clinical practice of our hospital. The AI system 
automatically assesses each radiograph and generates 
a result, which is then attached to a copy of the original 
radiograph for easy access by any involved physician. All 
radiographs were first interpreted by board-certified radi-
ologists with 1–6 years of post-certification experience 
in general radiology. These reports were subsequently 
reviewed and validated by senior radiologists with 10–20 
years of experience. While none of the radiologists had 
formal fellowship training in musculoskeletal imaging, all 
were routinely involved in trauma radiograph interpreta-
tion as part of clinical emergency care.

BoneView™ is a commercially available, Conformité 
Européenne (CE) marked AI tool designed to assist in 
detecting fractures, dislocations, effusions, and focal 
bone lesions in Digital Imaging and Communications 
in Medicine (DICOM) images. It covers analysis of both 
upper and lower limbs, the pelvis, thoracolumbar spine, 
and chest for patients aged 2 years and older. The AI sys-
tem is based on a CNN built upon Detectron2, an open-
source object detection platform developed by Facebook 
AI Research and implemented with PyTorch ​(​​​h​t​t​p​s​:​/​/​p​y​t​
o​r​c​h​.​o​r​g​/​​​​​)​. The training dataset used to develop the algo-
rithm consisted of 500,000 patient radiographs from 22 
radiology departments, collected between January 2011 
and May 2023.

The algorithm assigns confidence scores to the radio-
graphs, classifying them as ‘doubtful’ (confidence score 
between 50% and 90%) or ‘positive’ (confidence score 
above 90%). Scores below 50% are classified as negative 

results. These thresholds were derived from the receiver 
operating characteristic (ROC) curve, optimizing the 
balance between sensitivity and specificity. The software 
highlights the region of interest on the radiograph using 
a rectangular box, with a continuous line for positive 
results and a dotted line indicating doubt. Figure 1 pres-
ents an example of AI-guided fracture detection on wrist 
radiographs, performed by BoneView™ Version 2.5.1 
(Fig. 1).

Statistical analysis
A professional statistician (RH) performed the statisti-
cal analysis using R version 4.2.1. The reference standard 
(“ground truth”) was defined as the official radiologi-
cal report issued by a board-certified radiologist, based 
exclusively on AP and lateral radiographs. The perfor-
mance of the AI system was evaluated by calculating the 
following metrics:

 	• True Positives (TP), True Negatives (TN), False 
Positives (FP), and False Negatives (FN), derived 
from a confusion matrix comparing AI predictions to 
the ground truth.

 	• Accuracy was calculated as the proportion of 
correctly classified cases (TP + TN) over the total 
number of cases:

 	• Accuracy = (TP + TN) / (TP + TN + FP + FN).
 	• Cohen’s Kappa coefficient was used to measure the 

level of inter-rater agreement between the AI system 
and human raters, beyond chance:

 	• κ = (Po - Pe) / (1 - Pe), where Po is the observed 
agreement and Pe is the expected agreement by 
chance.

Fig. 1  Example of AI-guided fracture detection on wrist radiographs. AI: artificial intelligence

 

https://pytorch.org/
https://pytorch.org/


Page 4 of 9Ramadanov et al. Journal of Orthopaedic Surgery and Research          (2025) 20:468 

 	• F1 Score was calculated as the harmonic mean of 
precision and sensitivity:

 	• F1 = 2 × ((Precision × Sensitivity) / 
(Precision + Sensitivity)), where Precision = TP / 
(TP + FP).

 	• Sensitivity (Recall), or true positive rate, was 
calculated as the proportion of actual positives 
correctly identified by the AI:

 	• Sensitivity = TP / (TP + FN).
 	• Specificity, or true negative rate, was calculated 

as the proportion of actual negatives correctly 
identified:

 	• Specificity = TN / (TN + FP).
 	• Youden Index (J Statistic) was used to summarize 

the diagnostic effectiveness of the model:
 	• J = Sensitivity + Specificity − 1.

A p-value calculation was performed for accuracy, sen-
sitivity, and specificity using McNemar’s test, as these 
standard performance metrics are based on paired binary 
outcomes and allow for direct statistical comparison. 
Composite metrics such as Cohen’s Kappa, F1-score, 
and the Youden Index were reported descriptively, as no 
standard inferential tests are available for these measures. 
Importantly, these values are derived from the same 
underlying contingency table (true positives, false posi-
tives, true negatives, false negatives) used in the above 
p-value calculations, rendering additional significance 
testing redundant and methodologically inappropriate.

Results
Descriptive results
A total of 1,145 plain radiographsof the wrist were, taken 
between 11 September 2023 and 10 September 2024, 
were included (Fig. 2). They consist of of 556 AP radio-
graphs and 589 lateral view radiographs. The mean age of 
the patients included in the study was 46.6 years (± 27.3), 
with ages ranging from 2 to 99 years. Of the patients, 
41.0% were male and 59.0% were female. According to 
the ground truth, of the 556 AP radiographs, 225 cases 
(40.5%) showed a DFR, while 240 cases (40.7%) of the 589 
lateral view radiographs revealed a DFR. A descriptive 
analysis of the included radiographs is shown in (Table 
1).

Statistical analysis
Accuracy
The accuracy (%) of AI was 95.90 on AP radiographs and 
94.81 on lateral view radiographs (Fig.  3; Table  2). The 
accuracy (%) of the orthopedic surgeon was 94.95 on AP 
radiographs and 96.10 on lateral view radiographs (Fig. 4; 
Table 2).

Cohen’s kappa
Cohen’s Kappa of AI was 0.91 on AP radiographs and 
0.89 on lateral view radiographs (Fig. 5; Table 2). Cohen’s 
Kappa of the orthopedic surgeon was 0.89 on AP radio-
graphs and 0.92 on lateral view radiographs (Fig.  6; 
Table 2).

F1 score
F1 score of AI was 0.95 on AP radiographs and 0.93 on 
lateral view radiographs (Fig. 5; Table 2). F1 score of the 
orthopedic surgeon was 0.94 on AP radiographs and 0.95 
on lateral view radiographs (Fig. 6; Table 2).

Sensitivity
The sensitivity (%) of AI was 92.02 on AP radiographs 
and 89.79 on lateral view radiographs (Fig.  3; Table  2). 
The sensitivity (%) of the orthopedic surgeon was 89.73 
on AP radiographs and 99.71 on lateral view radiographs 
(Fig. 4; Table 2).

Specificity
The specificity (%) of AI was 98.45 on AP radiographs 
and 98.25 on lateral view radiographs (Fig.  3; Table  2). 
The specificity (%) of the orthopedic surgeon was 98.48 
on AP radiographs and 99.71 on lateral view radiographs 
(Fig. 4; Table 2).

Youden index
The Youden Index of AI was 90.47 on AP radiographs 
and 88.04 on lateral view radiographs (Fig.  3; Table  2). 
The Youden Index of the orthopedic surgeon was 88.22 
on AP radiographs and 90.55 on lateral view radiographs 
(Fig. 4; Table 2).

To provide a direct comparison of diagnostic per-
formance, Table  2 summarizes the key metrics for 
both the AI system and the orthopedic surgeon on AP 
radiographs.

Discussion
Main findings
The most important finding is that AI-guided detection 
of DRFs on radiographs is highly accurate, achieving 
performance comparable to that of experienced ortho-
pedic surgeons. The AI system exhibited high sensitivity 
(92.02% for AP radiographs and 89.79% for lateral view 
radiographs) and specificity (98.45% and 98.25%, respec-
tively), with an overall accuracy exceeding 94% in both 
planes. These findings highlight the potential of AI as a 
reliable diagnostic support tool in clinical settings.

The present study demonstrates high accuracy and reli-
ability of AI-guided DRF detection. A comparison with 
previous studies [3–9] highlights both similarities and 
differences in methodologies, validation approaches, and 
clinical applicability. Oude Nijhuis et al. [3] developed 
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an open-source CNN for DRF detection, achieving an 
internal accuracy of 87% and external accuracy of 82%. 
Compared to our study, their external validation results 
indicate lower performance, which may be attributed to 
dataset heterogeneity. Additionally, their fracture local-
ization accuracy remained moderate (AP50: 29–25), 
whereas the AI system demonstrates superior sensitivity 
and specificity. Anttila et al. [4] utilized a segmentation-
based deep learning model trained on 3,785 radiographs, 
achieving an AUC of 0.97 and 0.95. While this study 
demonstrated excellent performance, it lacked exter-
nal validation. Our study, by comparison, offers clini-
cally validated results, reinforcing AI’s reliability in a 
real-world setting. Kim et al. [5] applied DenseNet-161 
and ResNet-152 models, achieving AUCs of 0.962 and 
0.947, respectively. Our study’s results align closely, with 

Table 1  Descriptive analysis of the included radiographs. SD: 
standard deviation; AP: anteroposterior
Parameter Value
Patients (N) 590
Sex (N,%) male: 242 (41.0%)

female: 348 (59.0%)
Age (years ± SD; min.– max.) 46.6 ± 27.3; 2.0-98.8
Total number of radiographs (N) 1145
AP radiograph (N) 556
Fracture (N,%) Ground truth No: 331 (59.5%)

Ground truth Yes: 225 (40.5%)
Lateral view radiograph 589
Fracture (N,%) Ground truth No: 349 (59.3%)

Ground truth Yes: 240 (40.7%)

Fig. 2  Flowchart diagram. AP: anteroposterior
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Table 2  Statistical analysis of AI performance compared to human raters
AI on ap radiograph Orthopaedic 

surgeon on ap 
radiograph

p-value AI on lateral view 
radiograph

Orthopaedic surgeon 
on lateral view 
radiograph

p-
val-
ue

Accuracy 95.90 94.95 0.239 94.81 96.10 0.646
Cohen’s Kappa 0.913 0.894 N/A 0.891 0.918 N/A
F1 score 0.947 0.935 N/A 0.934 0.950 N/A
Sensitivity 92.02 89.73 0.182 89.79 90.83 0.773
Specificity 98.45 98.48 1.000 98.25 99.71 0.131
Youden Index 90.47 88.22 N/A 88.04 90.55 N/A
True Positives 196 201 N/A 211 218 N/A
True Negatives 318 325 N/A 337 348 N/A
False Positives 5 5 N/A 6 1 N/A
False Negatives 17 23 N/A 24 22 N/A
AI: artificial intelligence; AP: anteroposterior; N/A: not applicable

Fig. 4  AI performance on lateral view radiographs for accuracy, sensitivity, specificity and Youden Index compared to human raters. AI: artificial intelligence

 

Fig. 3  AI performance on AP radiographs for accuracy, sensitivity, specificity and Youden Index compared to human raters. AI: artificial intelligence; AP: 
anteroposterior
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Fig. 6  AI performance on lateral view radiographs for Cohen’s Kappa and F1 score compared to human raters. AI: artificial intelligence

 

Fig. 5  AI performance on AP radiographs for Cohen’s Kappa and F1 score compared to human raters. AI: artificial intelligence; AP: anteroposterior
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comparable sensitivity and specificity, suggesting that dif-
ferent CNN architectures may perform similarly when 
trained with adequate datasets. Oka et al. [6] introduced 
a bi-plane radiograph approach, achieving an exception-
ally high AUC of 0.991 despite using a relatively small 
dataset. This suggests that bi-plane imaging may enhance 
AI performance, a potential avenue for future refinement 
of the AI model. Gan et al. [7] compared AI performance 
against radiologists and orthopedists, finding that AI out-
performed radiologists but matched orthopedists (AUC: 
0.96). Our study corroborates this finding, as AI achieved 
performance comparable to an experienced orthopedic 
surgeon. Suzuki et al. [8] reported near-perfect AI accu-
racy (99.3%), surpassing hand orthopedic surgeons. Such 
high accuracy raises concerns of overfitting, whereas our 
study’s balanced sensitivity and specificity suggest a more 
generalized model. Lee et al. [9] assessed AI in detecting 
multiple wrist fractures, emphasizing improved diag-
nostic accuracy for novice radiologists. Similarly, our 
study highlights AI’s role in augmenting human expertise 
rather than replacing it.

The broader landscape of AI applications in fracture 
detection extends beyond DRFs, as highlighted in several 
comprehensive reviews. Ashworth et al. [10] emphasize 
the rapid advancements in AI-based pediatric fracture 
detection, yet they note that while AI models show high 
diagnostic accuracy, significant gaps remain in clinical val-
idation, cost-effectiveness, and bias assessment. This aligns 
with the need for AI tools to undergo rigorous real-world 
evaluation before widespread clinical integration. Ghasemi 
et al. [11] provide a meta-analysis on AI-driven osteo-
porosis detection using panoramic radiographs. Their 
findings suggest that while AI demonstrates high sensi-
tivity (87.92%) and specificity (81.93%), heterogeneity in 
study designs and potential small-study effects may influ-
ence reported accuracy. This underscores the necessity 
for larger, standardized datasets to improve AI reliability 
across different clinical settings. Binh et al. [12] examine 
AI’s role in pediatric elbow fracture detection, where deep 
learning models achieved an AUC of 0.95. Their analy-
sis highlights the importance of selecting appropriate 
backbone architectures, such as ResNet, to optimize AI 
performance. This review also stresses that manual pre-
processing by radiology experts remains a critical factor in 
enhancing AI-based fracture detection. Collins et al. [13] 
focus on AI’s role in rib fracture detection via radiograph 
and computed tomography (CT) imaging, revealing that 
AI achieved higher sensitivity (0.84) compared to radiolo-
gists (0.75). This suggests that AI can not only assist but 
potentially outperform human experts in specific diagnos-
tic tasks, particularly when rapid interpretation is needed 
in emergency settings. Lo Mastro et al. [14] discuss AI’s 
general impact on fracture detection, emphasizing its abil-
ity to standardize interpretations across radiologists with 

varying levels of experience. Structured AI-generated 
reports, they argue, can reduce variability in diagnoses 
and enhance workflow efficiency, a key advantage in high-
throughput radiology departments. Kutbi [15] expands the 
discussion beyond fracture detection, exploring AI appli-
cations in 3D CT and magnetic resonance imaging (MRI). 
Additionally, the review highlights the potential of gen-
erative AI and large language models to refine diagnostic 
capabilities through synthetic data generation and auto-
mated report creation. However, ethical considerations 
and model robustness remain crucial challenges that must 
be addressed before AI can achieve full clinical acceptance.

Clinical implications
The implementation of AI in fracture detection could 
significantly enhance diagnostic efficiency in emergency 
and orthopedic settings. By reducing radiologists’ work-
load and providing rapid, reliable assessments, AI can 
assist in early and accurate diagnosis, potentially leading 
to improved patient outcomes. Moreover, AI can serve as 
a valuable tool in resource-limited environments where 
access to experienced radiologists may be restricted. 
The high specificity of our AI model also suggests a low 
risk of unnecessary follow-up imaging or interventions, 
which could optimize healthcare resource utilization.

Beyond its role in diagnostic support, AI has the poten-
tial to improve triage workflows by prioritizing suspected 
fractures for radiologist review, thereby reducing delays 
in patient management. Additionally, AI could be inte-
grated into telemedicine frameworks, allowing remote 
evaluation of radiographs in underserved areas where 
access to orthopedic specialists is limited. Another 
promising application is in medical education, where 
AI-guided tools can help train radiology and orthopedic 
residents by providing immediate feedback on fracture 
detection and classification. However, successful imple-
mentation requires careful consideration of ethical and 
medico-legal aspects, including liability for AI-driven 
misdiagnoses and the need for continuous monitoring of 
AI performance to prevent biases from influencing clini-
cal decisions. Future research should focus on optimiz-
ing AI integration into clinical workflows to maximize its 
benefits while mitigating potential risks.

Limitations and strengths
One limitation of our study is its retrospective nature, 
which may introduce selection bias. Additionally, our 
dataset consists of radiographs from a single institution, 
limiting external generalizability. Another limitation is 
that the ground truth was based solely on radiologist 
interpretation of radiographs, which, although reflective 
of clinical practice, may be prone to occasional diagnostic 
error. The AI system’s performance was evaluated against 
ground truth based on radiological findings, which, while 
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reliable, may not fully account for all clinical variables 
influencing fracture diagnosis. Furthermore, although AI 
exhibited high accuracy, there were still false positives and 
false negatives, indicating that AI should be used as an 
adjunct rather than a replacement for human expertise.

A strength of our study is its relatively large sample size 
and the inclusion of both AP and lateral view radiographs, 
ensuring a robust evaluation of AI performance. The com-
parison with an experienced orthopedic surgeon provides 
a clinically relevant benchmark, and the use of multiple 
statistical metrics enhances the reliability of our findings.

Conclusion
AI-guided detection of distal radius fractures is highly 
accurate and comparable to human expert evaluation. 
AI has the potential to improve diagnostic efficiency 
and support clinicians in DRF assessment. However, 
further research is needed to validate AI performance 
across diverse clinical settings, different fractures, and 
to explore its integration into routine workflows. At the 
moment, AI should be viewed as a complementary tool 
that enhances, rather than replaces, human expertise in 
DRF diagnosis.
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